Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(2a^2+5ab-3b^2-7b-2\)
\(=\left(2a^2+6ab+2a\right)-\left(ab+3b^2+b\right)-\left(2a+6b+2\right)\)
\(=2a\left(a+3b+1\right)-b\left(a+3b+1\right)-2\left(a+3b+1\right)\)
\(=\left(2a-b-2\right)\left(a+3b+1\right)\)
b. \(2x^2-7xy+x+3y^2-3y\)
\(=\left(2x^2-xy\right)-\left(6xy-3y^2\right)+\left(x-3y\right)\)
\(=x\left(2x-y\right)-3y\left(2x-y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
c. \(6x^2-xy-2y^2+3x-2y\)
\(=\left(6x^2+3xy\right)-\left(4xy-2y^2\right)+\left(3x-2y\right)\)
\(=3x\left(2x+y\right)-2y\left(2x+y\right)+\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(2x+y\right)+\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(2x+y+1\right)\)
Bị tự tin quá khả năng nhẩm mồm, sai em xin lỗi ...
a, Ta có \(P\left(x\right)=8x^3+2x^2-3x-3x^3+10-x-2x^2-3\)
\(=5x^3-4x-7\)
\(Q\left(x\right)=9x^3-4x^2+2x-3+2x+3x^2+4x^3-2\)
\(=13x^3-x^2+4x-5\)
b, Ta có : \(P\left(-\frac{1}{2}\right)=5.\left(-\frac{1}{2}\right)^3-4.\left(-\frac{1}{2}\right)-7=-\frac{45}{8}\)
c , \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(5x^3-4x-7+13x^3-x^2+4x-5=18x^3-x^2-12\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(5x^3-4x-7-13x^3+x^2-4x+5=-8x^3-8x-2+x^2\)
d, Đặt \(5x^3-4x-7=0\)( vô nghiệm )
\(\left(2x^2-y\right)\left(4x^2-5xy^2+3y^2\right)\)
\(=\left(2x^2-y\right)4x^2-\left(2x^2-y\right)5xy^2+\left(2x^2-y\right)3y^2\)
\(=8x^4-4x^2y-10x^3y^2+5xy^3+6x^2y^2-3y^3\)
\(\text{Câu 1: }\left(2x^2-y\right)\left(4x^2-5xy^2+3y^2\right)\\ \\=2x^2\left(4x^2-5xy^2+3y^2\right)-y\left(4x^2-5xy^2+3y^2\right)\\ \\=\\8x^4-10x^3y^2+6x^2y^2-4x^2y+5xy^3+3y^3\)
Câu 2:
\(\text{ a) }48x^2y^2-3y^2+6xy-3x^2\\ \\ =3\left(16x^2y^2-y^2+2xy-x^2\right)\\ \\ =3\left[16x^2y^2-\left(x^2-2xy+y^2\right)\right]\\ =3\left[\left(4xy\right)^2-\left(x-y\right)^2\right]\\ \\ =3\left(4xy-x+y\right)\left(4xy+x-y\right)\)
\(\text{b) }2x^3y-4x^2y^2+2xy^3\\ \\=2xy\left(x^2-2xy+y^2\right)\\ \\=2xy\left(x-y\right)^2\)
\(\text{c) }4x^2-6x^3y-2x^2+8x\\ \\=2x^2-6x^3y+8x\\ \\ =2x\left(x-3x^2y+4\right)\)
\(\text{d) }6xy+5x-5y-3x^2-3y^2\\ \\ =\left(5x-5y\right)-\left(3x^2-6xy+3y^2\right)\\ \\ =5\left(x-y\right)-3\left(x^2-2xy+y^2\right)\\ \\ =5\left(x-y\right)-3\left(x-y\right)^2\\ \\ =\left(x-y\right)\left[5-3\left(x-y\right)\right]\\ =\left(x-y\right)\left(5-3x+3y\right)\)
a)
\(A=x^2-4x+18=\left(x^2-4x+4\right)+14=\left(x-2\right)^2+14\ge14>0\)
\(B=x^2-x+2=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{7}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\)
\(C=x^2-2xy+2y^2-2y+15\)
\(C=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+14\)
\(C=\left(x-y\right)^2+\left(y-1\right)^2+14\ge14>0\)
a) B = \(x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x=1\)
Ap dung dinh li Be du, ta có A chia hết cho B khi số dư = 0.
A = \(f\left(1\right)=1^4-3.1^3+6.1^2-7m+m=0\)
\(\Leftrightarrow m=\dfrac{2}{3}\)
Các câu còn lại đơn giản, áp dụng như câu a là được.
a ) Theo lược đồ hooc - ne
1 1 -3 6 -7+m 1 -2 4 -3+m
Để \(A\) chia hết cho B thì :
\(-3+m=0\Rightarrow m=3\)
Vậy \(m=3\)
\(a,C=A+B\\ =4x^2+3y^2-5xy+3x^2+2y^2+2x^2y^2\\ =\left(4x^2+3x^2\right)+\left(3y^2+2y^2\right)-5xy+2x^2y^2\\ =7x^2+5y^{^2}-5xy+2x^2y^2\\ b,C+A=B\\ =>C=B-A\\ =\left(3x^2+2y^2+2x^2y^2\right)-\left(4x^2+3y^2-5xy\right)\\ =3x^2+2y^2+2x^2y^2-4x^2-3y^2+5xy\\ =\left(3x^2-4x^2\right)+\left(2y^2-3y^2\right)+2x^2y^2+5xy\\ =-x^2-y^2+2x^2y^2+5xy\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`C = A + B`
`C = 4x^2 + 3y^2 - 5xy + 3x^2 + 2y^2 + 2x^2y^2`
`= (4x^2 + 3x^2) + (3y^2 + 2y^2) - 5xy + 2x^2y^2`
`= 7x^2 + 5y^2 - 5xy + 2x^2y^2`
`b)`
`C + A = B`
`=> C = B - A`
`C = (3x^2 + 2y^2 + 2x^2y^2)-(4x^2 + 3y^2 - 5xy)`
`= 3x^2 + 2y^2 + 2x^2y^2 - 4x^2 - 3y^2 + 5xy`
`= (3x^2 - 4x^2) + (2y^2 - 3y^2) + 2x^2y^2 + 5xy`
`= -x^2 - y^2 + 2x^2y^2 + 5xy`