Cho các cặp oxi hóa – khử được sắp xếp theo chiều tăng dần tính oxi hóa của dạng oxi hóa như...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D

13 tháng 1 2015

Ta có :  λo = 2300Ǻ = 2,3.10-7 (m).  h= 6,625.10-34 (J.s),  c = 3.108 m/s.
            Emax=1,5( eV) = 1,5.1,6.10-19= 2,4.10-19(J)

Mặt khác: Theo định luật bảo toàn năng lượng và hiện tượng quang điện ta có công thức
                  (h.c)/  λ = (h.c)/ λ
o  + Emax suy ra:  λ=((h.c)/( (h.c)/ λo  + Emax)) (1)
trong đó:
λo : giới hạn quang điện của kim loại
               
λ: bước sóng của ánh sáng chiếu vào bề mặt kim loại để bứt electron ra khỏi bề mặt kimloại.
                Emax: động năng ban đầu ( năng lượng của ánh sáng chiếu vào bề mặt kim loại).

Thay số vào (1) ta có:                                                            
                 λ = ((6,625.10-34.3.108)/((6,625.10-34.3.108)/(2,3.10-7) + (2,4.10-19)) = 1,8.10-7(m)
                    = 1800 Ǻ

Thầy xem hộ em lời giải của bài này ạ, em trình bày chưa được rõ ràng mong thầy sửa lỗi cho em ạ. em cám ơn thầy ạ!

13 tháng 1 2015

Năng lượng cần thiết để làm bật  e ra khỏi kim loại Vonfram là:

                            E===5,4eV

Để electron bật ra khỏi kim loại thì ánh sáng chiếu vào phải có bước sóng ngắn hơn bước sóngtấm kim loại. Mà năng lượng ánh chiếu vào kim loại có E1<E nên electron không thể bật ra ngoài

13 tháng 1 2015

Ta có: cos 45 \(\frac{\text{ λ}}{\text{ λ}'}=\frac{\text{ λ}}{0,22}\)

​=> λ = cos450.0,22 = 0.156Ǻ

3 tháng 2 2015

Thưa thầy, thầy chữa bài này được không ạ. Thầy ra lâu rồi nhưng chưa có đáp án đúng 

29 tháng 12 2014

Bài này đúng rồi

27 tháng 8 2015

1 Mol chất có \(6,02.10^{23}\) hạt, nên: 

a) Khối lượng nguyên tử Mg: \(24,31:6,02.10^{23}=\)

b) Thể tích 1 mol nguyên tử: \(24,31:1,738=13,99\) (cm3)

c) Thể tích trung bình của một nguyên tử: \(13,99:6,02.10^{23}=\)

d) Bán kính gần đúng của Mg: \(1,77A^0\)

24 tháng 9 2015

tại sao phần a lại làm như vậy bạn giảu thích kĩ hơn giúp mình đk k

29 tháng 12 2014

r: độ hấp phụ. 

Có: r = V. (Co -C1) / m => r1 = 0,1.( 10-4 - 0,6.10-4) / 2 = 2.10-6  , tương tự có  C2 = 0,4.10-4  => r2 = 1,5. 10-6 (mol/g).

Áp dụng pt: C/r = C/rmax + 1/rmax.k

ta được hệ: C1/r1 = C1/rmax + 1/rmax.k

                    C2/r2 = C2/rmax + 1/ rmax.k

Giải hệ đc: rmax = 6.10-6 , k = 8333,3. 

29 tháng 12 2014

Up lời giải lên xem thế nào

13 tháng 11 2015

Các phương trình phản ứng có thể xảy ra như sau:

Al   +   3AgNO3 \(\rightarrow\) Al(NO3)3 + 3Ag (1)

0,1/3    0,1 mol

2Al(dư) + 3Cu(NO3)2 \(\rightarrow\) 2Al(NO3)3 + 3Cu (2)

0,2/3        0,1 mol

Zn + Cu(NO3)2 (dư) \(\rightarrow\) Zn(NO3)2 + Cu (3)

0,1     0,1 mol

26 tháng 12 2014

Bài làm xuất sắc.