Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Màu tím có khoảng vân nhỏ nhất, đỏ có khoảng vân lớn nhất.
Vị trí vân sáng bậc 4 của ánh sáng đỏ: \(x_s^4 = 4. \frac{\lambda_d D}{a}\)
Tại vị trí này có vân sáng bậc \(k\) của ánh sáng có bước sóng \(\lambda\) tức là
\(x_s^4 = x_s^k<=> 4\frac{\lambda_d D}{a}= k\frac{\lambda D}{a} \)
<=> \(\lambda = \frac{4\lambda_d}{k}.\ \ (1)\)
Mà bước sóng \(\lambda\) này thỏa mãn \(0,38 \mu m \leq \lambda \leq 0,76 \mu m.\)
Thay (1) vào ta được \(0,38 \leq \frac{4\lambda_d}{k} \leq 0,76\)
<=> \( \frac{4\lambda_d }{0,76} \leq k \leq \frac{4\lambda_d}{0,38}\)
<=> \(\frac{4.0,76}{0,76} \leq k \leq \frac{4.0,76}{0,38}\)
<=> \(4 \leq k \leq 8.\)
=> \(k = 4,5,6,7,8.\)(trong đó k = 4 chính là vân sáng bậc 4 của ánh sáng đỏ)
Vậy ngoài vân sáng bậc 4 của ánh sáng đỏ ra thì còn 4 vân sáng của các ánh sáng khác tại vị trí đó.
Theo giả thiết ta có: \(MN=8i_1\)(*)
Mà: \(\frac{i_1}{i_2}=\frac{\lambda_1}{\lambda_2}=\frac{0,6}{0,48}=\frac{5}{4}\Rightarrow i_1=\frac{5}{4}i_2\)
Thay vào (*) ta có: \(MN=8.\frac{5}{4}i_2=10i_2\)
Do đó, số vân sáng có bước sóng 0,48\(\mu m\) quan sát được trên đoạn MN là 11 vân.
\(\frac{v_2}{v_1}=\frac{\lambda_2}{\lambda_1}\rightarrow\lambda_2=0,389\mu m\)
Đáp án C
Xây dựng từ phần lý thuyết, hiệu đường đi của ánh sáng từ hai khe đến vân tối thứ \(k+1\) là
\(d_2-d_1 = (k+0,5)\lambda.\)
Áp dụng với \(k+1 = 3\) => \(d_2-d_1 = (2+0,5)\lambda = 2,5 \lambda.\)
Tại vị trí vân bậc 4 của bước sóng 0,76um còn có vân sáng khác \(\Rightarrow ki=k'i'\)
k = 4
\(\Rightarrow k.\lambda = k'\lambda'\)
\(\Rightarrow 4.0,76 = k'\lambda'\)
\(0,38\mu m \le\lambda<0,76\mu m\)
\(\Rightarrow 4< k \le 8\)
\(\Rightarrow k =5;6;7;8\)
Vậy có 4 vân sáng thỏa mãn.
Số vân sáng trong khoảng giữa hai vân sáng nằm ở hai đầu là
\(N_s = 2[\frac{L}{2i}]+1=> \frac{L}{2i }= 10=> i = 2mm.\)
\(\lambda = \frac{ai}{D}= 0,6 \mu m.\)
Chọn B.
Ánh sáng trắng không có bước sóng xác định, còn tất cả ánh sáng đơn sắc đều có bước sóng xác định.