Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+ac+bc\right)=0\Rightarrow ab+ac+bc=0\Rightarrow\hept{\begin{cases}ab=-ac-bc\\ac=-ab-bc\\bc=-ac-ab\end{cases}}\)
Nên \(\frac{a^2}{a^2+2bc}=\frac{a^2+ab+bc+ac}{a^2+bc-ac-ab}=\frac{\left(a+c\right)\left(a+b\right)}{\left(a-c\right)\left(a-b\right)}\)
\(\frac{b^2}{b^2+2ac}=\frac{b^2+ab+bc+ac}{b^2+ac-ab-bc}=\frac{\left(a+b\right)\left(b+c\right)}{\left(b-a\right)\left(b-c\right)}\)
\(\frac{c^2}{b^2+2ab}=\frac{c^2+ab+ac+bc}{b^2+ab-ac-bc}=\frac{\left(c+b\right)\left(c+a\right)}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{\left(a+b\right)\left(a+c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a+b\right)\left(b+c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(c+b\right)\left(c+a\right)}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{\left(a+b\right)\left(a+c\right)\left(b-c\right)+\left(a+b\right)\left(b+c\right)\left(c-a\right)+\left(c+b\right)\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a+b\right)\left[\left(a+c\right)\left(b-c\right)+\left(b+c\right)\left(c-a\right)\right]+\left(c+b\right)\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a+b\right)\left(2bc-2ac\right)+\left(c+b\right)\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{-2c\left(a+b\right)\left(a-b\right)+\left(c+b\right)\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left[-2c\left(a+b\right)+\left(b+c\right)\left(c+a\right)\right]}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left(-a^2+ab+c^2-bc\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
Vậy \(P=1\)
Ta có: \(2ab+c=\dfrac{4ab+1-2a-2b}{2}=\dfrac{\left(2a-1\right)\left(2b-1\right)}{2}\)
Và: \(a+b=\dfrac{1-2c}{2}\)
\(\Rightarrow\left(a+b\right)^2=\dfrac{\left(2c-1\right)^2}{4}\)
Thế vô bài toán ta được
\(P=\dfrac{2ab+c}{\left(a+b\right)^2}.\dfrac{2bc+a}{\left(b+c\right)^2}.\dfrac{2ca+b}{\left(c+a\right)^2}\)
\(=\dfrac{\dfrac{\left(2a-1\right)\left(2b-1\right)}{2}}{\dfrac{\left(2c-1\right)^2}{4}}.\dfrac{\dfrac{\left(2b-1\right)\left(2c-1\right)}{2}}{\dfrac{\left(2a-1\right)^2}{4}}.\dfrac{\dfrac{\left(2c-1\right)\left(2a-1\right)}{2}}{\dfrac{\left(2b-1\right)^2}{4}}\)
\(=\dfrac{4.4.4}{2.2.2}=8\)
ta có : a+b+c=0=>a+b=-c ; b+c=-a ; a+c=-b
ta có: M= \(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)
M=\(\frac{2ab}{a^2-a\left(b-c\right)}+\frac{2bc}{b^2-b\left(c-a\right)}+\frac{2ca}{c^2-c\left(a-b\right)}\)
M=\(\frac{2ab}{a\left(a-b+c\right)}+\frac{2bc}{b\left(b-c+a\right)}+\frac{2ca}{c\left(c-a+b\right)}\)
M=\(\frac{2ab}{-ab+\left(a+c\right)}+\frac{2bc}{-bc+\left(a+b\right)}+\frac{2ac}{-ac+\left(b+c\right)}\)
M=\(\frac{2ab}{-2ab}+\frac{2bc}{-2bc}+\frac{2ca}{-2ca}\)
M=-1-1-1=-3
Vậy với a+b+c=0 thì M=-3