Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3^n=3^4\)
\(\Rightarrow n=4\)
\(b,2008^n=2008^0\)
\(\Rightarrow n=0\)
Câu 1.
C = 5 + 42 + 43 + ... + 42020
a) Xét A = 42 + 43 + ... + 42020
=> 4A = 43 + 44 + ... + 42021
=> 4A - A = 3A
= 43 + 44 + ... + 42021 - ( 42 + 43 + ... + 42020 )
= 43 + 44 + ... + 42021 - 42 - 43 - ... - 42020
= 42021 - 42
=> A = \(\frac{4^{2021}-4^2}{3}\)
Thế vào C ta được : \(C=5+\frac{4^{2021}-4^2}{3}=\frac{15}{3}+\frac{4^{2021}-4^2}{3}=\frac{4^{2021}+15-16}{3}=\frac{4^{2021}-1}{3}\)
b) D = 42021 => \(\frac{D}{3}=\frac{4^{2021}}{3}\)
Vì 42021 - 1 < 42021 => \(\frac{4^{2021}-1}{3}< \frac{4^{2021}}{3}\)
=> C < D/3
c) Dùng kết quả ý a) ta được :
3C + 1 = 42x-6
<=> \(3\cdot\frac{4^{2021}-1}{3}+1=4^{2x-6}\)
<=> 42021 - 1 + 1 = 42x-6
<=> 42021 = 42x-6
<=> 2021 = 2x - 6
<=> 2x = 2027
<=> x = 2027/2
Câu 2.
( x - 1 )( 4 + 22 + 23 + ... + 220 ) = 222 - 221
Xét A = 22 + 23 + ... + 220
=> 2A = 23 + 24 + ... + 221
=> A = 2A - A
= 23 + 24 + ... + 221 - ( 22 + 23 + ... + 220 )
= 23 + 24 + ... + 221 - 22 - 23 - ... - 220
= 221 - 4
Thế vô đề bài ta được
( x - 1 )( 4 + 221 - 4 ) = 222 - 221
<=> ( x - 1 ).221 = 221( 2 - 1 )
<=> x - 1 = 1
<=> x = 2
B=5+2(x-2019)2020
Vì (x-2019)2020 ≥0
=>5+(x-2019)2020 ≥5
Để B đạt Min
=>x-2019=0
=>x=2019
Vậy MinB=5 <=>x=2019
\(2^x.4=128\)
\(\Rightarrow2^x=128:4\)
\(\Rightarrow2^x=32=2^5\)
\(\Rightarrow x=5\)
tíc mình nha
Ta có: A = 1 + 2 + 22 + 23 + 24 + ...... + 2100
=> 2A = 2 + 22 + 23 + 24 + ...... + 2101
=> 2A - A = 2101 - 1
=> A = 2101 - 1
a,3+2x-1=24-[42-(22-2)]
=>3+2x-1=24-(16-2)
=>3+2x-1=24-14
=>3+2x-1=10
=>2x-1=10-3
=>2x-1=7
=>sai đề
a)5x+1=125
=>5x+1=53
=>x+1=3
=>x=2
vậy x=2
b)42x+1=64
=>42x+1=43
=>2x+1=3
=>x=1
vậy x =1
e)=>43x+2017=42020-3
=>3x+2017=2017
=>x=0
vậy x=0
f)=>2x+2x x 23=144
=>2x x (1+23)=144
=>2x x 9=144
=>2x=16
=>2x=24
=>x=4
vậy x=4