
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) ĐKXĐ : \(x\ne\pm5,x\ne0,x\ne\frac{5}{2}\)
Rút gọn :
Ta có : \(P=\left(\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right):\frac{5\left(2x-5\right)}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(=\frac{x^2-\left(x-5\right)\left(x-5\right)}{x\left(x-5\right)\left(x+5\right)}:\frac{5\left(2x-5\right)}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(=\frac{5\left(2x-5\right)}{x\left(x-5\right)\left(x+5\right)}\cdot\frac{x\left(x+5\right)}{5\left(2x-5\right)}+\frac{x}{5-x}\)
\(=\frac{1}{x-5}-\frac{x}{x-5}=\frac{1-x}{x-5}\)
Vậy : \(P=\frac{1-x}{x-5}\) với \(x\ne\pm5,x\ne0,x\ne\frac{5}{2}\)
b) Để \(P=2013\Leftrightarrow\frac{1-x}{x-5}=2013\)
\(\Leftrightarrow\frac{1-x}{x-5}-2013=0\)
\(\Leftrightarrow\frac{1-x-2013\left(x-5\right)}{x-5}=0\)
\(\Rightarrow10066-2014x=0\)
\(\Leftrightarrow2014x=10066\)
\(\Leftrightarrow x=\frac{10066}{2014}\approx4,999\)( thỏa mãn )
c) Để P là số nguyên \(\Leftrightarrow1-x⋮x-5\)
\(\Leftrightarrow-\left(x-5\right)-4⋮x-5\)
\(\Leftrightarrow4⋮x-5\)
\(\Leftrightarrow x-5\inƯ\left(4\right)\)
\(\Leftrightarrow x-5\in\left\{-1,1,-2,2,-4,4\right\}\)
\(\Leftrightarrow x\in\left\{4,6,3,7,1,9\right\}\) ( thỏa mãn ĐKXĐ và \(x\inℤ\) )
Vậy \(x\in\left\{4,6,3,7,1,9\right\}\) để P là số nguyên .

B=(x^2-6x+9)-8
B=(x-3)^2-8
Vì (x-3)^2\(\ge0\forall x\)
-> (x-3)-8\(\ge-8\forall x\)
Dấu = xảy ra<=> x-3=0<=>x=3
C=2x^2-10x+1
C=2(x^2-5x+6,25)-11,5
C= 2(x-2,5)^2-11,5
Vì 2(x-2,5)^2\(\ge0\forall x\)
->2(x-2,5)^2-11,5\(\ge-11,5\forall x\)
Dấu = xẩy ra<=> x-2,5=0<=>x=2,5
Vậy Min C là -11,5 <=> x=2,5
D= x^2+10-25
D=(x^2+10+25)-50
D=(x+5)^2-50
Vì (x-5)^2 \(\ge0\forall x\)
-> (x-5)^2-50\(\ge-50\forall x\)
Dấu = xẩy ra <=> x-5=0<=>x=5
Vậy Min D là -50 <=>x=5
Tìm Max
B= 5x-x^2
B=-(x^2-5x+25/4)-25/4
B= -(x-5/2)^2-25/4
Vì -(x-5/2)^2\(\le0\forall x\)
-> -(x-5/2)^2-25/4\(\le\)-25/4
Dấu = xẩy ra <=> x-5/2=0<=>x=5/2
Vậy Max B là -25/4 <=> x=5/2
C=-x^2-6x+10
C=-(x^2+6x+9)+19
C= -(x+3)^2+19
Vì -(x+3)^2\(\le\)0
=> -(x+3)^2+19\(\le\)19
Dấu = xảy ra <=> x+3=0<=>x=-3
D= -2x^x+8x+12
D=-2(x^2-4x+4)+20
D=-2(x-2)^2 +20
Vì -2(x-2)^2\(\le\)0
=> -2(x-2)^2+20\(\le\)20
Dấu= xẩy ra<=> x-2=0<=>x=2
Vậy Max D là 20<=>x-2

\(P=\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)
\(=\left[\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right]:\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)
\(=\left[\frac{x^2}{x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}\right]:\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)
\(=\frac{x^2-\left(x^2-10x+25\right)}{x\left(x-5\right)\left(x+5\right)}:\frac{10x-25}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{10x-25}+\frac{x}{5-x}\)
\(=\frac{1}{x-5}-\frac{x}{x-5}\)
\(=\frac{1-x}{x-5}=-\frac{x-1}{x-5}=-\frac{x-5+4}{x-5}=-1-\frac{4}{x-5}\)
Để P nguyên <=> x - 5 thuộc Ư(4) = {1;-1;2;-2;4;-4}
Ta có bảng:
x - 5 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 6 | 4 | 7 | 3 | 9 | 1 |
Vậy....

a)
2x-3=0 => x=3/2
b)
2x^2 +1 =0 => vô nghiệm
c) x^2 -25 =0 => x=5 loiaj
x=-5 nhân
d)
x^2 -25 =0 => x=5 loại
x=-5 loại

a. \(x\ne5\) là ĐKXĐ của biểu thức P
b. P =\(\dfrac{\left(x-5\right)^2}{x-5}\)=\(x-5\)
c. P = -1 <=> x-5 =-1 <=> x=4
bổ sung đk x dương thì mình làm được :))
còn cách truyền thống thì mời các idol chứ em chịu )):
\(C=\frac{x}{x^2+10x+25}=\frac{x}{\left(x+5\right)^2}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(x+5\ge2\sqrt{5x}\)
\(\Rightarrow\left(x+5\right)^2\ge20x\)
\(\Rightarrow\frac{1}{\left(x+5\right)^2}\le\frac{1}{20x}\)
\(\Rightarrow\frac{x}{\left(x+5\right)^2}\le\frac{1}{20}\)
Đẳng thức xảy ra <=> x = 5
Vậy MaxC = 1/20