\(x^2+y^2-2x+4y+2=0\)

viết (c') có tâm I(5;1) và (c') cắt (c) tại A,B sao...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 3 2023

(C) tâm \(O\left(1;-2\right)\) bán kính \(R=\sqrt{3}\)

\(\overrightarrow{OI}=\left(4;-3\right)\Rightarrow OI=5\)

Gọi giao điểm của OI và AB là H \(\Rightarrow H\) là trung điểm AB và \(OI\perp AB\) tại H

Áp dụng Pitago cho tam giác vuông OAH:

\(OH=\sqrt{OA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{3}{2}\)

\(\Rightarrow IH=OI-OH=\dfrac{7}{2}\)

\(\Rightarrow R'=IA=\sqrt{AH^2+IH^2}=\sqrt{\left(\dfrac{AB}{2}\right)^2+IH^2}=\sqrt{13}\)

Phương trình (C'): \(\left(x-5\right)^2+\left(y-1\right)^2=13\)

NV
25 tháng 4 2020

Câu 1:

Đường tròn (C) tâm \(I\left(1;2\right)\) bán kính \(R=2\)

\(\overrightarrow{IM}=\left(2;2\right)=2\left(1;1\right)\)

Do AB luôn vuông góc AM nên đường thẳng AB nhận (1;1) là 1 vtpt

Phương trình AB có dạng: \(x+y+c=0\)

Theo công thức diện tích tam giác:

\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}=\frac{1}{2}R^2sin\widehat{AIB}\le\frac{1}{2}R^2\)

\(\Rightarrow S_{max}=\frac{1}{2}R^2\) khi \(\widehat{AIB}=90^0\)

\(\Rightarrow d\left(I;AB\right)=\frac{R}{\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow\frac{\left|1+2+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Leftrightarrow\left|c+3\right|=2\Rightarrow\left[{}\begin{matrix}c=-1\\c=-5\end{matrix}\right.\)

Có 2 đường thẳng AB thỏa mãn: \(\left[{}\begin{matrix}x+y-1=0\\x+y-5=0\end{matrix}\right.\)

TH1: \(x+y-1=0\Rightarrow y=1-x\)

Thay vào pt đường tròn: \(x^2+\left(1-x\right)^2-2x-4\left(1-x\right)+1=0\)

Giải ra tọa độ A hoặc B (1 cái là đủ) rồi tính được AM

TH2: tương tự.

Bạn tự làm nốt phần còn lại nhé

25 tháng 4 2020

Đây là đề bài 1 chính thức nha bạn!

Trong Oxy, cho (C1): \(x^2+y^2-2x-4y+1=0\), M (3; 4)
a) Tìm tọa độ tâm I và tính bán kính R của (C1).
b) Viết phương trình tiếp tuyến d1 với đường tròn (C1) tại giao điểm của\(\Delta_1:x-2y+5=0,\Delta_2:3x+y+1=0\)
c) Viết phương trình tiếp tuyến d2 với đường tròn (C1) biết d2 song song với d: \(4x+3y+2020=0\)
d) Viết phương trình đường tròn (C2) có tâm M, cắt đường tròn (C1) tại hai điểm A, B sao cho \(S_{\Delta IAB}\)lớn nhất.

28 tháng 7 2020

Phương pháp giải

- Nhận xét vị trí của tâm đường tròn so với đường thẳng đã cho.

- Từ đó suy ra cách tìm tọa độ điểm AA.

NV
18 tháng 4 2019

\(x^2-2x+1+y^2-2y+1=1\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2=1\)\(\Rightarrow\left\{{}\begin{matrix}I\left(1;1\right)\\R=1\end{matrix}\right.\)

\(x+y-3=0\Rightarrow y=3-x\) thế vào pt đường tròn:

\(x^2+\left(3-x\right)^2-2x-2\left(3-x\right)+1=0\)

\(\Leftrightarrow2x^2-6x+4=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=2\Rightarrow y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(1;2\right)\\B\left(2;1\right)\end{matrix}\right.\) \(\Rightarrow AB=\sqrt{2}\)

Gọi phương trình d có dạng \(ax+by+c=0\)

Do d qua M(6;2) \(\Rightarrow6a+2b+c=0\Rightarrow c=-6a-2b\)

\(\Rightarrow ax+by-6a-2b=0\)

Do \(AB=\sqrt{2}\Rightarrow\) theo Pitago ta có: \(d\left(I;d\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\frac{\left|a.1+b.1-6a-2b\right|}{\sqrt{a^2+b^2}}=\frac{\sqrt{2}}{2}\Leftrightarrow\left|10a+2b\right|=\sqrt{2a^2+2b^2}\)

\(\Leftrightarrow\left(10a+2b\right)^2=2a^2+2b^2\Leftrightarrow98a^2+40ab+2b^2=0\)???

Bạn có nhầm điểm M ko? Với số liệu này thì tọa độ tính ra cực kì xấu?

22 tháng 4 2019

Đề không sai, ra số xấu nhưng vẫn có kết quả!

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Đường tròn (C):

\(x^2+y^2+2x-2y-2=0\)

\(\Leftrightarrow (x+1)^2+(y-1)^2=4=2^2\)

Do đó đường tròn (C) là đường tròn có tâm \(I(-1;1)\) bán kính \(R=2\)

Từ $I$ kẻ \(IH\perp BC\) thì $H$ là trung điểm của $BC$

\(\Rightarrow BH=\sqrt{3}\)

Áp dụng định lý Pitago:

\(IH=\sqrt{BI^2-BH^2}=\sqrt{R^2-3}=\sqrt{4-3}=1(1)\)

Mà: \(IH=d(I, d)=\frac{|-1-m+2m+3|}{\sqrt{m^2+1}}=\frac{|m+2|}{\sqrt{m^2+1}}(2)\)

Từ \((1); (2)\Rightarrow \frac{|m+2|}{\sqrt{m^2+1}}=1\)

\(\Rightarrow (m+2)^2=m^2+1\Leftrightarrow m^2+4m+4=m^2+1\)

\(\Leftrightarrow 4m+3=0\Leftrightarrow m=\frac{-3}{4}\)