Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tương tự bài trước, ta có:
\(\dfrac{\left|a.1+b.1\right|}{\sqrt{2}.\sqrt{a^2+b^2}}=cos45^0=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left|a+b\right|=\sqrt{a^2+b^2}\Leftrightarrow\left(a+b\right)^2=a^2+b^2\)
\(\Leftrightarrow2ab=0\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
Với \(a=0\) chọn \(b=1\) ; với \(b=0\) chọn \(a=1\), vậy có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}0\left(x-2\right)+1\left(y+6\right)=0\\1\left(x-2\right)+0\left(y+6\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y+6=0\\x-2=0\end{matrix}\right.\)

d nhận \(\overrightarrow{n_d}=\left(1;1\right)\) là 1 vtpt
Gọi \(\overrightarrow{n}=\left(a;b\right)\) là 1 vtpt của \(\Delta\), do d và \(\Delta\) tạo với nhau 1 góc 60 độ
\(\Rightarrow\dfrac{\left|a.1+b.1\right|}{\sqrt{1^2+1^2}.\sqrt{a^2+b^2}}=cos60^0=\dfrac{1}{2}\)
\(\Rightarrow\sqrt{2}\left|a+b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow2\left(a+b\right)^2=a^2+b^2\)
\(\Rightarrow a^2+4ab+b^2=0\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-2-\sqrt{3}\\b=-2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\) Có 2 đường thẳng \(\Delta\) thỏa mãn:
\(\left[{}\begin{matrix}1\left(x-2\right)-\left(2+\sqrt{3}\right)\left(y+6\right)=0\\1\left(x-2\right)-\left(2-\sqrt{3}\right)\left(y+6\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\left(2+\sqrt{3}\right)y-14-6\sqrt{3}=0\\x-\left(2-\sqrt{3}\right)y-14+6\sqrt{3}=0\end{matrix}\right.\)

1.
\(\left(C\right):x^2+y^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)
Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)
Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)
Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)
\(\Leftrightarrow m=-1\pm\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)
2.
Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)
\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)
\(\Leftrightarrow m=-1\pm2\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

Gọi d là tiếp tuyến của đường tròn (C)
Vì d vuông góc với d': x+y+2019
=> d:\(x-y+c=0\)
Ta có tâm I(1;-3) và R =5
\(d_{\left(I;d\right)}=R\) <=> \(\frac{\left|1.1-3.\left(-1\right)+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=5\)
<=> \(\left|4+c\right|=5\sqrt{2}\)
=> \(\left[{}\begin{matrix}c=5\sqrt{2}-4\\c=-5\sqrt{2}-4\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}d:x-y+5\sqrt{2}-4=0\\d:x-y-5\sqrt{2}-4=0\end{matrix}\right.\)