Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C A B O E F I M H P Q J K L
1. Ta có \(\widehat{AIB}=90^0+\frac{1}{2}\widehat{BAC}=135^0\), suy ra \(\widehat{BIM}=\widehat{CMI}=45^0\) vì \(BI||CM\)
Do \(\Delta ACM=\Delta AFM\) (c.g.c) nên \(\widehat{CMF}=2\widehat{CMI}=90^0.\)
2. Dễ thấy \(\frac{CH}{CA}=\frac{BH}{BC}\) hay \(\frac{2CH}{CP}=\frac{2BQ}{BC}\Rightarrow\frac{CH}{CP}=\frac{BQ}{BC}\)
Suy ra \(\Delta BQC~\Delta CHP\). Do đó \(\widehat{CPH}=\widehat{BCQ}=90^0-\widehat{PCQ}\). Vậy \(PH\perp CQ.\)
3. Gọi J là điểm chính giữa cung BC không chứa A của (O), ta có ngay J là tâm của (AIB)
Lấy điểm L sao cho \(JL||AB\) và \(IL\perp AB\)
Ta thấy \(\widehat{IFA}=\widehat{ICA}=\widehat{ICB}=\widehat{IEB}=45^0\), suy ra \(\Delta EIF\) vuông cân tại I
Vậy ta có \(S_{CEF}=\frac{1}{2}AH.EF=\frac{1}{2}AH.2r=AH.r\) với \(r\) là bán kính của (I)
Lại có \(r=IL-OJ\le IJ-OJ=R\left(\sqrt{2}-1\right)\) và \(AH\le OA=R\)
Suy ra \(S_{CEF}\le\left(\sqrt{2}-1\right)R^2\) (Không đổi). Đạt được khi A là điểm chính giữa cung BC.
4. Ta thấy tứ giác CHFM nội tiếp đường tròn đường kính CF, \(MC=MF\) do \(\Delta ACM=\Delta AFM\)
Do vậy HM là phân giác của \(\widehat{CHB}\). Dễ có \(\widehat{HCF}=90^0-\widehat{CFA}=\frac{1}{2}\widehat{HCB}\)
Vậy 3 đường phân giác CM, CF, BI của tam giác CHB đồng quy.