Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{99}+3^{100}\right)\)
\(=\left[3\left(1+3\right)\right]+\left[3^3\left(1+3\right)\right]+...+\left[3^{99}\left(1+3\right)\right]\)
\(=3\cdot4+3^3\cdot4+....+3^{99}\cdot4\)
\(=4\left(3+3^3+...+3^{99}\right)\)
\(\Rightarrow B⋮4\)
b, Vì 3 chia hết cho 3
32 chia hết cho 3
.
.
.
3100 chia hết cho 3
\(\Rightarrow B⋮3\)
c,\(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+2^4\right)+....+\left(3^{99}+3^{100}\right)\)
\(=12+\left[3^2\left(3+3^2\right)\right]+....+\left[3^{97}\left(3+3^2\right)\right]\)
\(=12+3^2\cdot12+....+3^{97}\cdot12\)
\(=12\left(1+3^2+...+3^{97}\right)\)
\(\Rightarrow B⋮12\)
a) ta có A= 2+2^2+2^3+2^4+2^5+2^6
=2*(1+2+2^2+2^3+2^4+2^5)
=2*63 =2*21*3 CHIA HẾT CHO 3( vì có một thứa số 3 trong tích )
còn lại bạn làm tương tự nha
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
n+6 ⋮ n-5
Vì n-5 ⋮ n-5
=> n+6 - (n-5) ⋮ n-5
=> n+6 - n+5 ⋮ n-5
=> 11 ⋮ n-5
=> n-5 \(\in\)Ư(11)
=> n-5 \(\in\){1;-1;11;-11}
=> n \(\in\){6;4;16;-6}
Vậy...
3n+22 ⋮ n-5
Vì 3(n-5) ⋮ n-5
=> 3n+22 - 3(n-5) ⋮ n-5
=> 3n+22 - 3n+15 ⋮ n-5
=> 37 ⋮ n-5
=> n-5 \(\in\)Ư(37)
=> n-5 \(\in\){1;-1;37;-37}
=> n \(\in\){6;4;42;-32}
Vậy...
2(n+1) ⋮ n-2
Vì 2(n-2) ⋮ n-2
=> 2(n+1) - 2(n-2) ⋮ n-2
=> 2n+2 - 2n+4 ⋮ n-2
=> 6 ⋮ n-2
=> n-2 \(\in\)Ư(6)
=> n-2 \(\in\){1;-1;2;-2;3;-3;6;-6}
=> n \(\in\){3;1;4;0;5;-1;8;-4}
Vậy...
hi
hi