Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: A = 3 + 3^2 + ...+ 3^20 ( có 20 số hạng)
A = (3+3^2) + ...+ (3^19+3^20)
A = 3.(1+3) + ...+ 3^19.(1+3)
A = 3.4 + ...+ 3^19.4
A = 4.(3+...+3^19) chia hết cho 4
phần còn lại làm tương tự nha
\(C=3+3^2+3^3+3^4+.....+3^{100}\)
\(\Leftrightarrow C=\left(3+3^2+3^3+3^4\right)+........+\left(3^{97}+3^{98}+^{99}+3^{100}\right)\)
\(\Leftrightarrow C=3\left(1+3+3^2+3^3\right)+......+3^{97}+\left(1+3+3^2+3^3\right)\)
\(\Leftrightarrow C=3.40+.....+3^{97}.40\)
\(\Leftrightarrow C=40.\left(3+...+3^{97}\right)\)
\(\Rightarrow C⋮40\left(dpcm\right)\)
_Vi hạ_
\(C=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8...++3^{97}+3^{98}+3^{99}+3^{100}\)
\(C=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(C=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(C=\left(1+3+3^2+3^3\right)\left(3+3^5+...+3^{96}\right)\)
\(C=40.\left(3+3^5+...+3^{100}\right)⋮40\)
Vậy \(C⋮40\)
1. C = 1 + 3 + 3^2 + 3^3 + .... + 3 ^11
( 1+ 3 + 3^2 ) +..... + ( 3^9 +3^10+3^11 )
13 . 1 +..... + 3^9 . 13
13 ( 1 +......+ 3^9 ) chia hết cho 13
Câu b tương tự nhé
2013+2012^2(1+2012)+.......................+2011^6(1+2012) TA THẤY MOI SO DAU CO THUA SO 2012 +1 =2013 VAY NÓ CHIA HET CHO 13
1+2011=2012
VẦY TA CÓ 2011+1 + 2011^2+2011^2 X2011 +.......................2011^6 +2011^6 X 2011 SUUY RA 2012+2011^2(1+2011)+..........................+2016^6(1+2011)=(2011+1) X ( 2011^2+...............+2016^6) =2012(2011^2+...............+2016^6) TA THẤY 2012 CHIA HẾT CHO 2012 VẬY TỔNG NÀY CHIA HẾT CHO 2012