Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chúc bạn học tốt!
Bạn tham khảo tại đây nhé:
Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath
Ta có: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\) (Nhân lần lượt mỗi vé với a,b,c)
\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\) (Áp dung dãy tỉ số bằng nhau)
\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}\Rightarrow}}\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\) (đpcm)
k cho mình!
bn chứng minh điều ngược lại đúng và trong đáp án quyển SBT đấy
Ta có: bx−cyabx−cya = cx−axbcx−azb = ay−bxcay−bxc
⇒ bx−cyabx−cya = a(bx−cy)a²a(bx−cy)a² = abx−acya²abx-acya²
cx−azbcx−axb = b(cx−az)b²b(cx−az)b² = bcx−baxb²bcx−baxb²
ay−bxcay−bxc = c(ay−bx)c²c(ay−bx)c² = cay−cbxc²cay−cbxc²
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
bx−cyabx−cya = cx−azbcx−axb = cy−bxccy−bxc = abx−acy+bcx−bax+cay−cbxa²+b²+c²abx−acy+bcx−bax+cay−cbxa²+b²+c² = 0
\(\Rightarrow\) bx - cy = 0
cx - ax = 0
ay - bx = 0
\(\Rightarrow\) bx = cy
cx = ax
ay = bx
\(\Rightarrow\) xcxc = ybyb
xaxa = xcxc
ybyb = xaxa
\(\Rightarrow\) xaxa = ybyb = xcxc
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
= \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
=> \(\frac{bz-cy}{a}=0\)nên bz - cy = 0 => bz = cy.Hay b/y = c/z [1]
=> \(\frac{cx-az}{b}=0\)nên cx - az = 0 => cx = az . Hay c/z = a/x [2]
Từ 1 và 2 => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)