\(\frac{1-\sqrt{x}}{\sqrt{x}}+\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{1}{x-\sqrt{x}}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\) 

Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)

               \(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

               \(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{-1}{\sqrt{x}+1}\)

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

23 tháng 6 2021

\(a,ĐKXĐ:x\ge0;x\ne1\)

\(P=\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(P=\left(1+\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}+x-\sqrt{x}\right)\)

\(P=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)

\(P=\left(x+1\right)^2\left(x-1\right)^2\)

\(P=\left[\left(x+1\right)\left(x-1\right)\right]^2\)

\(P=\left(x^2+x-x-1\right)^2\)

\(P=\left(x^2-1\right)^2\)

b, \(7-4\sqrt{3}=2^2-4\sqrt{3}+\sqrt{3}\)

\(\left(2-\sqrt{3}\right)^2\)

\(P=\left(x^2-1\right)^2< \left(2-\sqrt{3}\right)^2\)

\(x^2-1< 2-\sqrt{3}\)

\(x^2< 3-\sqrt{3}\)

\(x< \sqrt{3-\sqrt{3}}\)

23 tháng 6 2021

a) ĐKXĐ: \(\hept{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\\1+\sqrt{x}\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

Ta có: \(P=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(P=\left(\frac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)}-\sqrt{x}\right)\)

\(P=\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2=\left(x-1\right)^2\)

b) Với x > = 0 và x khác 1

Ta có: \(P< 7-4\sqrt{3}\)

<=> \(\left(x-1\right)^2< \left(2-\sqrt{3}\right)^2\)

<=> \(\left(x-1-2+\sqrt{3}\right)\left(x-1+2-\sqrt{3}\right)< 0\)

<=> \(\left(x-3+\sqrt{3}\right)\left(x+1-\sqrt{3}\right)< 0\)

<=> \(\hept{\begin{cases}x-3+\sqrt{3}< 0\\x+1-\sqrt{3}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3+\sqrt{3}>0\\x+1-\sqrt{3}< 0\end{cases}}\)

<=> \(\hept{\begin{cases}x< 3-\sqrt{3}\\x>\sqrt{3}-1\end{cases}}\) hoặc \(\hept{\begin{cases}x>3-\sqrt{3}\\x< \sqrt{3}-1\end{cases}}\)

<=> \(\sqrt{3}-1< x< 3-\sqrt{3}\)