Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
TH1 : Thay x = 2 vào biểu thức trên ta được :
\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
TH2 : Thay x = -2 vào biểu thức trên ta được :
\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí
c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)
\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)
Vậy với x = -1 thì A = 2
d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)
\(\Rightarrow x+2< 0\)do 2 > 0
\(\Leftrightarrow x< -2\)
Vậy với A < 0 thì x < -2
e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x + 2 | 1 | -1 | 2 | -2 |
x | -1 | -3 | 0 | -4 |
2.
ĐKXĐ : \(x\ne\pm2\)
a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)
Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)
Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)
Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3
c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)
<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)
d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)
e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)
Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }
=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }
B1:
\(a,A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(=\left(\frac{\left(3-x\right)\left(x+3\right)^2}{\left(x+3\right)\left(x^2-9\right)}+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)
\(=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)
\(=\left(\frac{\left(3-x\right)\left(x+3\right)}{x^2-9}+\frac{x\left(x-3\right)}{x^2-9}\right).\frac{x+3}{3x^2}\)
\(=\frac{3x+9-x^2-3x+x^2-3x}{x^2-9}.\frac{x+3}{3x^2}\)
\(=\frac{9-3x}{x^2-9}.\frac{x+3}{3x^2}\)
\(=\frac{3\left(3-x\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)3x^2}\)
\(=\frac{3-x}{x^3-3x^2}\)
B2:
\(a,B=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left(\frac{x}{x^2-4}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)
\(=\left(\frac{x}{x^2-4}-\frac{2\left(x+2\right)}{x^2-4}+\frac{x+2}{x^2-4}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
\(=\left(\frac{x-2x-4+x-2}{x^2-4}\right):\frac{6}{x+2}\)
\(=-\frac{6}{x^2-4}.\frac{x+2}{6}\)
\(=\frac{-6\left(x+2\right)}{\left(x+2\right)\left(x-2\right)6}=-\frac{1}{x-2}\)
\(ĐKXĐ:x\ne\pm1\)
a) \(B=\left(\frac{1-x^3}{1-x}-x\right)\div\frac{1-x^2}{1-x-x^2+x^3}\)
\(\Leftrightarrow B=\left(\frac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}-x\right):\left(\frac{\left(1-x\right)\left(1+x\right)}{\left(x-1\right)^2\left(x+1\right)}\right)\)
\(\Leftrightarrow B=\left(1+x+x^2-x\right):\left(\frac{-1}{x-1}\right)\)
\(\Leftrightarrow B=-\left(x^2+1\right).\left(x-1\right)\)
\(\Leftrightarrow B=-x^3+x^2-x+1\)
b) Để B < 0
\(\Leftrightarrow-x^3+x^2-x+1< 0\)
\(\Leftrightarrow-\left(x^2+1\right)\left(x-1\right)< 0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x-1\right)>0\)
TH1 : \(\hept{\begin{cases}x^2+1>0\left(tm\right)\\x-1>0\end{cases}\Leftrightarrow x>1}\)
TH2 : \(\hept{\begin{cases}x^2+1< 0\left(ktm\right)\\x-1< 0\end{cases}}\Leftrightarrow x\in\varnothing\)
Vậy để \(B< 0\Leftrightarrow x>1\)
c) Khi \(x-4=5\)
\(\Leftrightarrow x=9\)
\(\Leftrightarrow B=-\left(9^3\right)+9^2-9+1\)
\(\Leftrightarrow B=-729+81-9+1\)
\(\Leftrightarrow B=-656\)
Vậy khi \(x-4=5\Leftrightarrow B=-656\)
a) A = \(\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1}{1-x}-1\right)\)
A = \(\frac{3x^2+3x-3}{x^2+2x-x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1-1+x}{1-x}\right)\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\frac{x}{1-x}\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{3x^2+3x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x^2+3x+2}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x^2+2x+x+2}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x+1}{x-1}\) (Đk: \(x-1\ge0\) => x \(\ge\)1)
b) Ta có: A = \(\frac{x+1}{x-1}=\frac{\left(x-1\right)+2}{x-1}=1+\frac{2}{x-1}\)
Để A \(\in\)Z <=> 2 \(⋮\)x - 1
<=> x - 1 \(\in\)Ư(2) = {1; -1; 2; -2}
<=> x \(\in\){2; 0; 3; -1}
c) Ta có: A < 0
=> \(\frac{x+1}{x-1}< 0\)
=> \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\)
=> \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(loại) hoặc \(\hept{\begin{cases}x>-1\\x< 1\end{cases}}\)
=> -1 < x < 1
Edogawa Conan
Thiếu dòng đầu \(ĐKXĐ:\hept{\begin{cases}x\ne1\\x\ne-2\\x\ne0\end{cases}}\)