Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn chỉ cần tính như nhân đa thức với đa thức sau đó rút gọn,kết quả ra là số thì bn gọi là ko phù hợp vào biến
a: \(=x^3-3x^2+3x-1-x^3+1-3x\left(1-x\right)\)
\(=-3x^2+3x-3x+3x^2=0\)
b: \(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}=\dfrac{2}{27}\)
a) Điều kiện : \(x\ne\pm\dfrac{1}{3}\)
\(B=\left[\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right]:\dfrac{6x^2+10x}{1-6x+9x^2}\)
\(=\left(\dfrac{3x\left(3x+1\right)}{\left(1-3x\right)\left(3x+1\right)}+\dfrac{2x\left(1-3x\right)}{\left(1-3x\right)\left(3x+1\right)}\right):\dfrac{6x^2+10x}{ \left(3x-1\right)^2}\)
\(=\dfrac{9x^2+3x+2x-6x^2}{\left(1-3x\right)\left(3x+1\right)}\cdot\dfrac{\left(1-3x\right)^2}{6x^2+10x}\)
\(=\dfrac{x\left(3x+5\right)}{\left(1-3x\right)\left(3x+1\right)}\cdot\dfrac{\left(1-3x\right)^2}{2x\left(3x+5\right)}=\dfrac{1-3x}{2\left(3x+1\right)}\)
b) Sai đề = Không làm
c) B >0
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}1-3x>0\\2\left(3x+1\right)>0\end{matrix}\right.\\\left[{}\begin{matrix}1-3x< 0\\2\left(3x+1\right)< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x>-\dfrac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)
TH1 => \(-\dfrac{1}{3}< x< \dfrac{1}{3}\)
TH2 :Vô lí
Vậy giá trị x thỏa mãn :
\(-\dfrac{1}{3}< x< \dfrac{1}{3}\)
có phải M=\(\dfrac{x+3}{3x}+\dfrac{2}{x+1}-3:\dfrac{2-4x}{x+1}-3x-x^2+\dfrac{1}{3x}\)
ko bạn
cho loi giai di