\(A=\left(\frac{\sqrt{x}-1}{x-4}-\frac{\sqrt{x}+1}{x+4\sqrt{x}+4}\right):\frac{x\sqrt{x}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

ĐK: \(x>0,x\ne4\)

1, \(A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\frac{\left(x-4\right)^2}{\sqrt{x}^3}\)

\(A=\frac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\frac{\left(x-4\right)^2}{x}\)

\(A=\frac{2}{\sqrt{x}+2}.\frac{x-4}{x}\)

\(A=\frac{2\sqrt{x}-4}{x}\)

2, \(x=\left(\sqrt{3}+1\right)^2\)

Thay \(x=\left(\sqrt{3}+1\right)^2\):

\(A=\frac{2\sqrt{3}-2}{\left(\sqrt{3}+1\right)^2}\)

3, \(A\ge\frac{1}{4}\Rightarrow\)\(\frac{2\sqrt{x}-4}{x}-\frac{1}{4}\ge0\)

\(\Leftrightarrow\frac{8\sqrt{x}-16-x}{4x}\ge0\)

\(\Rightarrow x-8\sqrt{x}+16\le0\)

\(\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\left(TM\right)\)

3 tháng 8 2017

1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)

\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)

c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)

Vậy \(x>4\)thì \(R>0\)

2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)

Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)

3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)

b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)

NV
2 tháng 4 2019

\(A=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-4}+\frac{\sqrt{x}-10}{x-4}\)

\(A=\frac{x+2\sqrt{x}+x-3\sqrt{x}+2+\sqrt{x}-10}{x-4}\)

\(A=\frac{2x-8}{x-4}=\frac{2\left(x-4\right)}{x-4}=2\)

\(B=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{\left(3\sqrt{3}+4\right)^2}}\)

\(B=43+24\sqrt{3}-8\sqrt{20+6\sqrt{3}+8}\)

\(B=43+24\sqrt{3}-8\sqrt{28+6\sqrt{3}}\)

\(B=43+24\sqrt{3}-8\sqrt{\left(3\sqrt{3}+1\right)^2}\)

\(B=43+24\sqrt{3}-24\sqrt{3}-8\)

\(B=35\)

2 tháng 4 2019

Nguyễn Việt Lâm giúp mk nhá, tks bn nhìu :>>