\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

#)Giải :

Ta có : \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{b+d}{2bd}\)

\(\Rightarrow2bd=c\left(b+d\right)\left(1\right)\)

Do b là trung bình cộng của a và c nên \(b=\frac{a+c}{2}\)

Thay vào (1) ta được \(2.\frac{a+c}{2}.d=c\left(\frac{a+c}{2}+d\right)\)

\(\Rightarrow\left(a+c\right)d=\frac{c\left(a+c+2d\right)}{2}\)

\(\Rightarrow\left(a+c\right)2d=c\left(a+c+2d\right)\)

\(\Rightarrow2ad+2cd=ac+c^2+2cd\)

\(\Rightarrow2ad=ac+c^2=c\left(a+c\right)=c.2b\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrowđpcm\)

26 tháng 9 2015

+) b là trung bình cộng của a và c => a + c  = 2b

+) \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{2}{d}\right)\) => \(\frac{1}{c}=\frac{d+2b}{2bd}\) => 2bd = c(d + 2b) . Thay 2b = a + c ta có: 

(a + c)d = c.(d + a + c) => ad + cd = cd + ac + c2 => ad = ac + c=> ad = c.(a + c) => ad = cb => \(\frac{a}{b}=\frac{c}{d}\) (điều phải chứng minh)

26 tháng 9 2015

Bạn xem tại đây

27 tháng 10 2016

Ta có:

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{b+d}{2bd}\)

\(\Rightarrow2bd=c\left(b+d\right)\left(2\right)\)

Do b là TBC của a và c nên \(b=\frac{a+c}{2}\)

Thay vào (1) ta có: \(2.\frac{a+c}{2}.d=c.\left(\frac{a+c}{2}+d\right)\)

=> (a + c).d = \(\frac{c.\left(a+c+2d\right)}{2}\)

=> (a + c).2d = c.(a + c + 2d)

=> 2ad + 2cd = ac + c2 + 2cd

=> 2ad = ac + c2 = c.(a + c) = c.2b

=> ad = bc

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)