Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
gọi I là giao điểm của BD và CE
ta có E là trung điểm cua AB nên EB bằng 3 cm
xét △EBI có \(\widehat{I}\)=900 có
EB2 = EI2 + BI2 =32=9 (1)
tương tự IC2 + DI2 = 16 (2)
lấy (1) + (2) ta được
EI2+DI2+BI2+IC2=25
⇔ ED2+BC2=25
xét △ABC có E là trung điểm của AB và D là trung điểm của AC
⇒ ED là đường trung bình của tam giác
⇒ 2ED =BC
⇔ ED2=14BC2
⇒ 14BC2+BC2=25
⇔ 54BC2=25
⇔ BC2=20BC2=20
⇔ BC=√20
Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)
\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)
Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)
Mà: AH2=BH.CH
=> AH2.AH2=BH.CH.AH2
<=> AH4=20736
=> AH=12cm
=> BH=9cm ; CH=16cm
Vậy BC=25cm
mình hướng dẫn nhé
b) ta có: \(\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ADB}=90^0\)
\(\Rightarrow AD\perp BC\) là đường cao đồng thời là đường phân giác
\(\Rightarrow\widehat{BAD}=\widehat{CAD}=\frac{1}{2}\widehat{BAC}\)
ta lại có \(\widehat{DAE}=\widehat{EBD}\) cùng chắn cung \(DE\) nhỏ
\(\Rightarrow\widehat{CBE}=\frac{1}{2}\widehat{BAC}\)
bạn tham khảo : https://hoc24.vn/hoi-dap/question/477209.html
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Thánh Ca ơi đây là toán lớp 9 mình nhờ bạn giải toán lớp 9 chứ ko phải là mấy bài toán lớp 3, 4 đâu nha bạn
bạn ko giải đc thì thôi đừng bình luận để mình mong chờ
3)kẻ BD vuông góc voi71 BC, D thuộc AC
tam giác ABC cân tại A có AH là Đường cao
suy ra AH là trung tuyến
Suy ra BH=HC
(BD vuông góc BC
AH vuông góc BC
suy ra BD song song AH
suy ra BD/AH = BC/CH = 2
suyra 1/BD = 1/2AH suy ra 1BD^2 =1/4AH^2
tam giác BDC vuông tại B có BK là đường cao
suy ra 1/BK^2 =1/BD^2 +1/BC^2
suy ra 1/BK^2 =1/4AH^2 +1/BC^2
1) \(1+tan^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\) (đpcm).
a) Ta có : \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\bigtriangleup ABC\) vuông tại \(A\) (đpcm)
b) Từ \(AB\cdot AC=AH\cdot BC\)
\(\Rightarrow6\cdot8=AH\cdot10\)
\(\Rightarrow AH=4,8\)
c) Từ \(AB^2=BC\cdot BH\)
\(\Rightarrow6^2=10\cdot HB\)
\(\Rightarrow HB=3,6\)
Từ \(HB+HC=BC\)
\(\Rightarrow3,6+HC=10\)
\(\Rightarrow HC=6,4\)
\(S_{\bigtriangleup ABC}=\dfrac{1}{2}AB\cdot AC\) .