Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1/
a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)
b/ \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)
\(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)
\(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)
Vậy x = 9/25 , x = 4
1) a) ĐKXĐ : \(0\le x\ne\frac{1}{9}\)
b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)ĐKXĐ : tự làm nha
\(A=\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right)\times\left(1-\frac{1}{\sqrt{x}}\right)\)
\(A=\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\times\left(1-\frac{1}{\sqrt{x}}\right)\)
\(A=\left(\frac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\times\left(1-\frac{1}{\sqrt{x}}\right)\)
\(A=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\times\left(1-\frac{1}{\sqrt{x}}\right)\)
\(A=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\times\left(\frac{\sqrt{x}-1}{\sqrt{x}}\right)\)
\(A=\frac{2}{\sqrt{x}+1}\)(1)
b) Thay \(x=3-2\sqrt{2}\)vào (1) , ta có:
\(A=\frac{2}{\sqrt{3-2\sqrt{2}}+1}=\frac{2}{\sqrt{2}-1+1}=\sqrt{2}\)
c) Ta có: \(x.A=\frac{8}{3}\Leftrightarrow x.\left(\frac{2}{\sqrt{x}+1}\right)=\frac{8}{3}\)
\(\Leftrightarrow\frac{2x}{\sqrt{x}+1}=\frac{8}{3}\Rightarrow6x=8\sqrt{x}+8\)
Đến đây bn tự giải x ra nhé .
P/s : mình sửa đề dấu chia thành dấu nhân nha
b, A = \(2-\sqrt{2}\) bn xem lại
c, mục đích của mik là tìm x , thế nên mik mới hỏi
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Với \(x\ne\pm1\)thì \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{2}{x^2-1}-\frac{x}{x-1}+\frac{1}{x+1}\right)=\left(\frac{x^2+2x+1}{x^2-1}-\frac{x^2-2x+1}{x^2-1}\right):\left(\frac{2}{x^2-1}-\frac{x^2+x}{x^2-1}+\frac{x-1}{x^2-1}\right)=\frac{4x}{x^2-1}:\frac{1-x^2}{x^2-1}=\frac{-4x}{x^2-1}\)b) \(x=\sqrt{3+\sqrt{8}}=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
Khi đó \(A=\frac{-4\left(\sqrt{2}+1\right)}{\left(\sqrt{2}+1\right)^2-1}=\frac{-4\left(\sqrt{2}+1\right)}{2\left(\sqrt{2}+1\right)}=-2\)
c) \(A=\sqrt{5}\Leftrightarrow\frac{-4x}{x^2-1}=\sqrt{5}\Leftrightarrow\sqrt{5}x^2+4x-\sqrt{5}=0\)
Dùng công thức nghiệm của phương trình bậc hai tìm được \(x=\frac{\sqrt{5}}{5}\)hoặc \(x=-\sqrt{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(P=\frac{\sqrt{x}+1}{x}\)
b) \(P>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)
\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)
\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)
\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)
Vậy P > 1/2 với mọi x> 0 ; x khác 1
Bài 2 :
a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)
\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)
\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)
b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )
Thay a vào biểu thức K , ta có :
\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Ta có: \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
Và: \(x-1=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
=> \(P=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right].\frac{\sqrt{x}+1}{\sqrt{x}}\)
=> \(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
=> \(P=\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}.\frac{1}{\sqrt{x}}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}.\frac{1}{\sqrt{x}}\)
=> \(P=\frac{2}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}=\frac{2}{x-1}\)
b/ Thay \(x=\frac{\sqrt{3}}{2+\sqrt{3}}\) => \(P=\frac{2}{\frac{\sqrt{3}}{2+\sqrt{3}}-1}=\frac{2\left(2+\sqrt{3}\right)}{\sqrt{3}-2-\sqrt{3}}\)
=> \(P=-\left(2+\sqrt{3}\right)\)
c/ \(P=\frac{2}{x-1}=-\frac{4}{\sqrt{x}+1}\) <=> \(\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\frac{2}{\sqrt{x}+1}\)
<=> \(\frac{1}{\sqrt{x}-1}=-2\)
<=> \(1=-2\sqrt{x}+2\)
<=> \(2\sqrt{x}=1=>\sqrt{x}=\frac{1}{2}=>x=\frac{1}{4}\)
a) đkxđ: \(x\ne\pm1\)
Ta có:
\(P=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right)\div\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)
\(P=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\div\frac{x-1+x\left(x+1\right)+2}{\left(x-1\right)\left(x+1\right)}\)
\(P=\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\div\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(P=\frac{4x}{\left(x-1\right)\left(x+1\right)}\div\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\)
\(P=\frac{4x}{\left(x+1\right)^2}\)
b) Ta có: \(x=\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
=> \(P=\frac{4\left(\sqrt{3}+1\right)}{\left(\sqrt{3}+1+1\right)^2}=\frac{4\sqrt{3}+4}{\left(\sqrt{3}+2\right)^2}=\frac{4+4\sqrt{3}}{7+4\sqrt{3}}\)
c) \(P=-3\)
\(\Leftrightarrow\frac{4x}{\left(x+1\right)^2}=-3\)
\(\Leftrightarrow-3\left(x^2+2x+1\right)=4x\)
\(\Leftrightarrow-3x^2-6x-3=4x\)
\(\Leftrightarrow3x^2+10x+3=0\)
\(\Leftrightarrow\left(3x^2+x\right)+\left(9x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=-3\end{cases}}\)