\(\frac{x^2+2}{x^3-1}\)+ \(\frac{x+1}{x^2+x+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2020

\(P=\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}+\frac{1}{1-x}\)

ĐKXĐ : \(x\ne1\)

\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\)

\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x}{x^2+x+1}\)

b) Xét hiệu P - 1/3 ta có :

 \(\frac{x}{x^2+x+1}-\frac{1}{3}=\frac{3x}{3\left(x^2+x+1\right)}-\frac{x^2+x+1}{3\left(x^2+x+1\right)}=\frac{3x-x^2-x-1}{3\left(x^2+x+1\right)}=\frac{-x^2+2x-1}{3\left(x^2+x+1\right)}\)

\(=\frac{-\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}=\frac{-\left(x-1\right)^2}{3\left(x^2+x+1\right)}\)

Ta có : ( x - 1 )2 ≥ 0 ∀ x => -( x - 1 )2 ≤ 0 ∀ x

x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x

=> 3( x2 + x + 1 ) ≥ 9/4 > 0 ∀ x

Vậy -( x - 1 )2 và 3( x2 + x + 1 ) trái dấu nhau

=> \(\frac{-\left(x-1\right)^2}{3\left(x^2+x+1\right)}\le0\)hay P - 1/3 ≤ 0

Đẳng thức xảy ra <=> x = 1 ( ktm ) => Không xảy ra đẳng thức

Vậy P < 1/3 ( đpcm )

16 tháng 12 2020

\(P=\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}+\frac{1}{1-x}\)

\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x}{x^2+x+1}\)

26 tháng 4 2018

BÀI 1:

 a)   \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)  \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)

\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

c)  \(A=0\)  \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)

                      \(\Leftrightarrow\) \(x+2=0\)

                      \(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)

Vậy ko tìm đc  x   để  A = 0

p/s:  bn đăng từng bài ra đc ko, mk lm cho

26 tháng 4 2018

giải nhanh giúp mik nha mn:)

2 tháng 2 2020

\(a,Đkxđ:x\ne\pm2\)

\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x+1\right)^2}{x^2-4}\)

b, Ta có: \(\left(x-2\right)\left(x+2\right)< 0;\forall-2< 2< 2;x\ne-1\)

Mà: \(\left(x+1\right)^2>0\left(\forall x\ne-1\right)\)

\(\Rightarrow\frac{\left(x+1\right)^2}{\left(x+2\right)\left(x-2\right)}< 0;\forall-2< x< 2;x\ne-1\)

Vậy ............

29 tháng 12 2019

\(A=\frac{1}{x+2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Với \(\forall x\in\left[-2;2\right]\) thì \(\left(x-2\right)\left(x+2\right)< 0\Rightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}< 0\Rightarrow A< 0\)

4 tháng 5 2019

a, \(Đkxđ:\hept{\begin{cases}x\ne1\\x\ne\pm3\end{cases}}\)

\(P=\left(1+\frac{1}{x-1}\right):\left(\frac{x^2-7}{x^2-4x+3}+\frac{1}{x-1}+\frac{1}{3-x}\right)\)

\(=\left(\frac{x-1}{x-1}+\frac{1}{x-1}\right):\left(\frac{x^2-7}{\left(x-1\right)\left(x-3\right)}+\frac{1}{x-1}-\frac{1}{x-3}\right)\)

\(=\left(\frac{x-1+1}{x-1}\right):\left(\frac{x^2-7+x-3-\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}\right)\)

\(=\frac{x}{x-1}:\frac{x^2-7+x-3-x+1}{\left(x-1\right)\left(x-3\right)}\)

\(=\frac{x}{x-1}.\frac{\left(x-1\right)\left(x-3\right)}{x^2-9}\)

\(=\frac{x}{x-1}.\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x}{x+3}\)

4 tháng 5 2019

b, \(|x+2|=5\)

\(\Rightarrow x+2=\hept{\begin{cases}5\Leftrightarrow x+2\ge0\Rightarrow x\ge-2\\-5\Leftrightarrow x+2< 0\Rightarrow x< -2\end{cases}}\)

Nếu \(x\ge-2\Rightarrow x+2=5\)

\(\Rightarrow x=3\)\(\left(ktmđkxđ\right)\)

Nếu \(x< -2\Rightarrow x+2=-5\)

\(\Rightarrow x=-7\)\(\left(tm\right)\)

Vậy \(x=-7\)

11 tháng 8 2016

\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}=\)\(\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+1}{x^2-4}=\)\(\frac{x+2+x-2+x^2+1}{x^2-4}=\)

=(x^2+2x+1)/(x-2)(x+2)=(x+1)^2/(x-2)(x+2)

Vì x>-2 và x<2 nên (x-2)<0, x+2>0, \(\left(x+1\right)^2>0\). Suy ra A<0

29 tháng 2 2020

1, \(=\left[\frac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}-x\right]:\frac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)

\(=\left(1+x+x^2-x\right):\frac{1-x^2}{\left(1-x\right)\left(1-x^2\right)}\)\(=\left(x^2+1\right)\left(1-x\right)\)

2, để B<0 <=> (x2+1)(1-x)<0

vì x^2+1 > 0 với mọi x

=> \(\hept{\begin{cases}x^2+1>0\\1-x< 0\end{cases}\Leftrightarrow x>1}\)

3, \(\left|x-4\right|=5\Leftrightarrow\orbr{\begin{cases}x=9\\x=-1\left(loại\right)\end{cases}}\)

Thay x=9 vào B ta có: B=(92+1)(1-9)=82.(-8)=-656