\(A=3+3^2+3^3+...+3^{120}\)

Số tự nhiên n thỏa mãn :

2A +3 =3

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2015

121

đúng đấy ! 

17 tháng 11 2015

ta có : A=3+32+33+...+3120

       3A = 32+33+34+...+3121

       3A-A = 32+33+34+...+3121-3-32-33-...-3120

          2A= 3121-3

         2A+3 = 3121-3+3

         2A+3 =  3121

vì 2A+3=3n mà 2A+3= 3121 suy ra n= 121

vậy n= 121

 

14 tháng 11 2015

\(3A=3^2+3^3+...+3^{121}\)

\(3A-A=\left(3^2-3^2\right)+........+\left(3^{120}-3^{120}\right)+3^{121}-3\)

A = \(\frac{3^{121}-3}{2}\)

2A + 3 = \(\frac{3^{121}-3}{2}.2+3=3^{121}=3^n\)

Vậy n = 121       

9 tháng 11 2015

\(A=3+3^2+3^3+...+3^{120}\)

\(\Rightarrow3A=3\left(3+3^2+3^3+...+3^{100}\right)\)

\(3A=3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^3+...+3^{100}\right)\)

\(\Rightarrow2A=3^{101}-3\)

\(\Rightarrow2A+3=3^{101}-3+3=3^{101}=3^n\)

\(\Rightarrow n=101\)

vậy ...