\(\dfrac{x+6\sqrt{x}+9}{\sqrt{x}+3}-\dfrac{x-4}{\sqrt{x}-2}\)tìm x để T c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Ta có: \(T=\dfrac{x+6\sqrt{x}+9}{\sqrt{x}+3}-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+3-\sqrt{x}-2\)

=1

10 tháng 7 2021

Để T có nghĩa 

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}+3\ne0\\\sqrt{x}-2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

\(T=\dfrac{x+6\sqrt{x}+9}{\sqrt{x}+3}-\dfrac{x-4}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-2}=\sqrt{x}+3-\left(\sqrt{x}+2\right)=1\)

Bài 1: 

a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)

=>3 căn x=3

=>căn x=1

hay x=1(loại)

17 tháng 8 2017

a)\(ĐK:x\ne9,x\ge0\)

\(D=\left(\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right)\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{x+3+1\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

17 tháng 8 2017

\(x=\sqrt{6+4\sqrt{2}}-\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+2\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}+2\right|-\left|\sqrt{2}+1\right|=\sqrt{2}+2-\sqrt{2}-1=1\)

\(\Rightarrow D=\dfrac{1+1}{1+3}=\dfrac{2}{4}=\dfrac{1}{2}\)

29 tháng 7 2017

\(a,ĐKXĐ:x\ge0;x\ne9;x\ne4\)

\(b,C=\left(\dfrac{x-9-x+3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\\ =\left(\dfrac{3\sqrt{x}-9}{x-9}\right):\)

\(\left(\dfrac{\left(\sqrt{x}-2\right)^2-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-9+x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\\ =\left(\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{x-4\sqrt{x}+4-x+9-9+x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\\ =\dfrac{3}{\sqrt{x}+3}.\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\\ =\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2}\\ =\)

17 tháng 7 2018

\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)

\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)

\(\Leftrightarrow\sqrt{x}-2< 0\)

\(\Leftrightarrow x< 4\)

Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)

KL............

\(2.\) Tương tự bài 1.

\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)

\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)

11 tháng 9 2017

1. b) \(\left(x\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)

=\(\left(x\sqrt{\dfrac{6x}{x^2}}+\sqrt{\dfrac{6x}{9}}+\sqrt{6x}\right):\sqrt{6x}\)

=\(\left(\sqrt{6x}+\dfrac{1}{3}\sqrt{6x}+\sqrt{6x}\right):\sqrt{6x}\)

=\(\dfrac{7}{3}\sqrt{6x}:\sqrt{6x}=\dfrac{7}{3}\)

2.

P=\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)(bn có ghi sai đề ko)

a) ĐKXĐ : \(x\ge1,x\ge2,x\ge0\)

b) P=\(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

=\(\dfrac{x-3\sqrt{x}-\sqrt{x}+3-2x+\sqrt{x}+4\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

=\(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)

c) thay x= \(4-2\sqrt{3}\)vào P ta có :

\(\dfrac{1}{\sqrt{4-2\sqrt{3}}-2}=\dfrac{1}{\sqrt{3}-1-2}=\dfrac{1}{\sqrt{3}-3}\)

13 tháng 9 2017

@Lê Đình Thái mk k ghi sai dè nha bn

1 tháng 8 2018

a, Rút gọn P

\(\dfrac{3}{\sqrt{x}+3}-\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2-\sqrt{x}}{\sqrt{x}+3}\right)\)

\(\Leftrightarrow\left(1-\dfrac{\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{x+3\sqrt{x}-2\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{-\left(\sqrt{x}-2\right)\sqrt{x}+3}\right)\)

\(\Leftrightarrow\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+3}\right):\left(\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2-\sqrt{x}}{\sqrt{x}+3}\right)\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2-\sqrt{x}}{\sqrt{x}+3}\right)\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{\left(\sqrt{x}+3\right).\left(3-\sqrt{x}\right).\left(x+\sqrt{3}\right).\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right).\left(2-\sqrt{x}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)+x-9-\left(2\sqrt{x}-x-4+2\sqrt{x}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{9-x+x-9-\left(4\sqrt{x}-x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{-4\sqrt{x}+x+4}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{\left(\sqrt[]{x}-2\right)^2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}.\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(\Leftrightarrow3.\dfrac{1}{\sqrt{x}-2}\)

\(\Leftrightarrow\)\(\dfrac{3}{\sqrt{x}-2}\)

a:ĐKXĐ: x>=0; \(x\notin\left\{4;9\right\}\)

\(A=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{2x-4\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{x}-x-2x+3\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-3x+5\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-3x+6\sqrt{x}-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-3\sqrt{x}-1}{\sqrt{x}-3}\)

b: Để A là số nguyên thì \(-3\sqrt{x}+9-10⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(x\in\left\{16;25;1;64;169\right\}\)

30 tháng 6 2018

có phải/....

1) \(A=\dfrac{x+3}{\sqrt{x}-2}\)

\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-2}{x-4}\) hay \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\left(\sqrt{x}-2\right)}{x-4}\)

2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

30 tháng 6 2018

1.B=\(\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)