\(\sqrt{x^2-5x+14}-\sqrt{x^2-5x+10}=2\). Tính \(A=\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

ta có

\(2A=\left(\sqrt{x^2-5x+14}-\sqrt{x^2-5x+10}\right)\left(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}\right)\)

⇔ 2A=x2-5x+14-x2+5x-10

⇔2A= 4

⇔ A=2

15 tháng 7 2018

1) Đk: \(x\ge4\)

\(\dfrac{\sqrt{x^2-16}}{\sqrt{x-3}}+\sqrt{x-3}=\dfrac{7}{\sqrt{x-3}}\)

\(\Leftrightarrow\dfrac{\sqrt{x^2-16}}{\sqrt{x-3}}+\dfrac{x-3}{\sqrt{x-3}}=\dfrac{7}{\sqrt{x-3}}\)

\(\Leftrightarrow\dfrac{\sqrt{x^2-16}+x-10}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\sqrt{x^2-16}+x-10=0\)

\(\Leftrightarrow\sqrt{x^2-16}=10-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-16=100-20x+x^2\\x\le10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20x=116\\x\le10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{29}{5}\left(N\right)\\x\le10\end{matrix}\right.\)

Kl: x= 29/5

2) Đk: \(x\ge-1\)

\(x^2-5x+14=4\sqrt{x+1}\)

\(\Leftrightarrow x^4+25x^2+196-10x^3-140x+28x^2=16x+16\)

\(\Leftrightarrow x^4-10x^3+53x^2-156x+180=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3-7x^2+32x-60\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(x^2-4x+20\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-4x+20=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=3\left(N\right)\)

Kl: x=3

15 tháng 7 2018

cảm ơn nhìu

A)\(\left(\sqrt{5-2}+\sqrt{5+2}\right)^2=\left(\sqrt{5-2}\right)^2+2\sqrt{5-2}\sqrt{5+2}+\left(\sqrt{5-2}\right)^2\)\(=5-2+6+5+2=16\)

B)\(\left(\sqrt{x+y}-\sqrt{x-y}\right)^2=\left(\sqrt{x+y}\right)^2-2\sqrt{x-y}\sqrt{x+y}+\left(\sqrt{x-y}\right)2\) 

\(=x+y-2x+2y+x-y=2y\), Cho mik đúng nha bn!

27 tháng 7 2018

a) \(A=x^2-2x-6\)

\(A=\left(x^2-2x+1\right)-7\)

\(A=\left(x-1\right)^2-7\)

\(\left(x-1\right)^2\) luôn \(\ge\)\(0\) => GTNN của biểu thức là -7 với \(\left(x-1\right)^2=0\) tức x=1

a: \(=x^2-2x+1-7=\left(x-1\right)^2-7>=-7\)

Dấu '=' xảy ra khi x=1

b: \(=4x^2-4x+1+6=\left(2x-1\right)^2+6>=6\)

Dấu '=' xảy ra khi x=1/2

c: \(=9x^2-6x+1-1=\left(3x-1\right)^2-1>=-1\)

Dấu '=' xảy ra khi x=1/3

d: \(=x^2+12x+36-36=\left(x+6\right)^2-36>=-36\)

Dấu '=' xảy ra khi x=-6

e: \(=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\)

Dấu '=' xảy ra khi x=3/2

26 tháng 7 2018

E = \(6x+\sqrt{9x^2-12x+4}\)

E = \(6x+\sqrt{\left(3x-2\right)^2}\)

E = \(6x+\left|3x-2\right|\)

E = \(6x+3x-2\)

E = \(9x-2\)

F = \(5x-\sqrt{x^2+4x+4}\)

F = \(5x-\sqrt{\left(x+2\right)^2}\)

F = \(5x-\left|x+2\right|\)

F = \(5x-x+2\)

F = \(4x+2\)

13 tháng 8 2018

thay vì lm cho bn thì mk sẽ chỉ bn cách lm nha . và mk sẽ lm bài khó nhất trong số này để lm mẩu .

đối với dạng toán tìm tập xác định nó sẽ có các trường hợp sau :

th1: \(\sqrt{a}\) thì \(a\ge0\)

th2: \(\dfrac{a}{b}\) thì \(b\ne0\)

th3: \(\dfrac{a}{\sqrt{b}}\) thì \(b>0\)

trong đám này chắc câu c là câu khó nhất nên mk sẽ lm câu c

bài làm

để \(\sqrt{5x^2-3x-8}\) xác định thì \(5x^2-3x-8\ge0\)

\(\Leftrightarrow\left(5x-8\right)\left(x+1\right)\ge0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5x-8\ge0\\x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}5x-8\le0\\x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{8}{5}\\x\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{8}{5}\\x\le-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{8}{5}\\x\le-1\end{matrix}\right.\) vậy ...............................................................................................

a: ĐKXĐ: 7-x2>0

=>x2<7

hay \(-\sqrt{7}< x< \sqrt{7}\)

b: ĐKXĐ: \(\dfrac{2x-1}{2-x}>=0\)

\(\Leftrightarrow\dfrac{2x-1}{x-2}< =0\)

=>1/2<=x<2