Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\\ =\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}+2\right)\cdot\left(3\sqrt{x}+14\right)}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}+14}{5\sqrt{x}-1}\)
a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4
Ta có: P = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-\sqrt{x}-2}\)
P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{x+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{-\left(x+6\sqrt{x}+\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
P = \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}\)
b) Với x \(\ge\)0 và x \(\ne\)4, ta có:
P > -1 <=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}>-1\)
<=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}+1>0\)
<=> \(\frac{\sqrt{x}-2-\sqrt{x}-6}{\sqrt{x}-2}>0\)
<=> \(\frac{-8}{\sqrt{x}-2}>0\)
Do -8 < 0 => \(\sqrt{x}-2< 0\) <=> \(\sqrt{x}< 2\)<=> \(x< 4\)
mà x \(\ge0\) => 0 \(\le\)x \(< \)4
c)Với x \(\ge\)0 và x \(\ne\)4
Để P \(\in\)Z <=> -8 \(-8⋮\sqrt{x}-2\)
<=> \(\sqrt{x}-2\inƯ\left(-8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Do \(\sqrt{x}\ge0\) <=> \(\sqrt{x}-2\ge-2\) => \(\sqrt{x}-2\in\left\{-2;-1;1;2;4;8\right\}\)
Lập bảng:
\(\sqrt{x}-2\) | -2 | -1 | 1 | 2 | 4 | 8 |
x | 0 | 1 | 9 | 16 | 36 | 100 |
Vậy ....
a)ĐKXĐ:x khác 4, x>0
\(Q=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{2\sqrt{x}}{x-4}\cdot\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{2x}{\left(x-4\right)\left(\sqrt{x}-2\right)}\)
mình nghĩ đề sai nên không làm tiếp nữa
a) \(ĐKXĐ:x>0;x\ne4\)
Ta có : \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4x}{2\sqrt{x}-x}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}\right)\)
\(=\left[\frac{\sqrt{x}.\sqrt{x}-4x}{\sqrt{x}.\left(\sqrt{x}-2\right)}\right]\cdot\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
\(=\frac{-3x}{\sqrt{x}.\left(\sqrt{x}+3\right)}\)
b) Ta có : \(x-1=10-4\sqrt{6}=\left(\sqrt{6}-2\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{6}-2\right)^2+1}\)
......
1) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\frac{4}{9}\end{matrix}\right.\)
Ta có: \(Q=\frac{-5\sqrt{x}+4}{3\sqrt{x}-2}+\frac{6\sqrt{x}+4}{2\sqrt{x}+3}+\frac{29\sqrt{x}-28}{3\left(6x+5\sqrt{x}-6\right)}\)
\(=\frac{3\left(-5\sqrt{x}+4\right)\left(2\sqrt{x}+3\right)}{3\left(3\sqrt{x}-2\right)\left(2\sqrt{x}+3\right)}+\frac{3\left(6\sqrt{x}+4\right)\left(3\sqrt{x}-2\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}+\frac{29\sqrt{x}-28}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)
\(=\frac{3\left(-10x-7\sqrt{x}+12\right)}{3\left(3\sqrt{x}-2\right)\left(2\sqrt{x}+3\right)}+\frac{3\left(18x-8\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}+\frac{29\sqrt{x}-28}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)
\(=\frac{-30x-21\sqrt{x}+36+54x-24+29\sqrt{x}-28}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)
\(=\frac{24x+8\sqrt{x}-16}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)
\(=\frac{8\left(3x+3\sqrt{x}-2\sqrt{x}-2\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)
\(=\frac{8\left(\sqrt{x}+1\right)\left(3\sqrt{x}-2\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)
\(=\frac{8\sqrt{x}+8}{6\sqrt{x}+9}\)
2) Để \(Q>\frac{8}{3}\) thì \(Q-\frac{8}{3}>0\)
\(\Leftrightarrow\frac{8\sqrt{x}+8}{6\sqrt{x}+9}-\frac{8}{3}>0\)
\(\Leftrightarrow\frac{24\sqrt{x}+24}{3\left(6\sqrt{x}+9\right)}-\frac{8\left(6\sqrt{x}+9\right)}{3\left(6\sqrt{x}+9\right)}>0\)
\(\Leftrightarrow\frac{24\sqrt{x}+24-48\sqrt{x}-72}{9\left(2\sqrt{x}+3\right)}>0\)
mà \(9\left(2\sqrt{x}+3\right)>0\forall x\) thỏa mãn ĐKXĐ
nên \(-24\sqrt{x}-48>0\)
\(\Leftrightarrow-24\left(\sqrt{x}+2\right)>0\)
\(\Leftrightarrow\sqrt{x}+2< 0\)(Vô lý)
Vậy: Không có giá trị nào của x thỏa mãn \(Q>\frac{8}{3}\)