K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\cdot\left(x+1\right)\cdot x+\dfrac{1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\left(\dfrac{1}{x-1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\dfrac{\left(x^2+1\right)\left(x+1\right)+x-1}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\dfrac{x^3+x^2+x+1+x-1}{\left(x-1\right)}\cdot\dfrac{x+1}{2x+1}\)

\(=\dfrac{x^3+x^2+2x}{x-1}\cdot\dfrac{x+1}{2x+1}=\dfrac{x\left(x^2+x+2\right)\left(x+1\right)}{\left(x-1\right)\left(2x+1\right)}\)

b: Khi x=1/2 thì \(A=\dfrac{\dfrac{1}{2}\left(\dfrac{1}{4}+\dfrac{1}{2}+2\right)\left(\dfrac{1}{2}+1\right)}{\left(\dfrac{1}{2}-1\right)\left(2\cdot\dfrac{1}{2}+1\right)}=-\dfrac{33}{16}\)

20 tháng 2 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne-\frac{1}{2}\end{cases}}\)

a) \(A=\left(\frac{1}{x-1}+\frac{x}{x^3-1}\cdot\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(\Leftrightarrow A=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)

\(\Leftrightarrow A=\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x+1\right)^2}{2x+1}\)

\(\Leftrightarrow A=\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(2x+1\right)}\)

\(\Leftrightarrow A=\frac{x+1}{x-1}\)

b) Thay \(x=\frac{1}{2}\)vào A, ta được :

\(A=\frac{\frac{1}{2}+1}{\frac{1}{2}-1}=\frac{\frac{3}{2}}{-\frac{1}{2}}=-3\)

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)a)rút gọn A và tính A khi x=2b)Rút gọn B và tìm x để B=2/5c)tìm x thuộc Z  để (A,B)thuộc Z 2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2c)tìm x để A>03)B= x+2/x+3 - 5/x^2+x-6 - 1/2-xa)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị...
Đọc tiếp

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z  để (A,B)thuộc Z
 
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0

3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị nguyên

4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C    b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1         d) tìm giá trị nhỏ nhất của biểu thức C

5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D 
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
 

2
7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

23 tháng 12 2021

giúp mình mọi người ơi

12 tháng 12 2021

cứuuuuuuuuuuu

 

7 tháng 2 2020

\(ĐKXĐ:x\ne\pm1\)

a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{4x^2}{1-x^2}\right):\frac{2x^2-2}{x^2-2x+1}\)

\(\Leftrightarrow A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{4x^2}{x^2-1}\right):\frac{2\left(x^2-1\right)}{\left(x-1\right)^2}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)

\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)

\(\Leftrightarrow A=\frac{4x-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)

\(\Leftrightarrow A=\frac{-4x\left(x-1\right)^3}{2\left(x-1\right)^2\left(x+1\right)^2}\)

\(\Leftrightarrow A=\frac{-2x\left(x-1\right)}{\left(x+1\right)^2}\)

b) Thay x = -3 vào A, ta được :

\(A=\frac{\left(-2\right)\left(-3\right)\left(-3-1\right)}{\left(-3+1\right)^2}\)

\(\Leftrightarrow A=\frac{6.\left(-4\right)}{2^2}\)

\(\Leftrightarrow A=-6\)

c) Để A > -1

\(\Leftrightarrow-2x\left(x-1\right)>-\left(x+1\right)^2\)

\(\Leftrightarrow2x\left(x-1\right)< \left(x+1\right)^2\)

\(\Leftrightarrow2x^2-2x< x^2+2x+1\)

\(\Leftrightarrow x^2-4x-1< 0\)

\(\Leftrightarrow\left(x-2\right)^2-5< 0\)

\(\Leftrightarrow\left(x-2\right)^2< 5\)

Đoạn này bạn tự tìm giá trị x thỏa mãn là xong (Chú ý ĐKXĐ)

a: Thay x=5 vào B, ta được:

\(B=\dfrac{5-1}{5-3}=\dfrac{4}{2}=2\)

b:  \(A=\dfrac{2x^2+6x-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-1}{\left(x+3\right)\left(x-3\right)}\)

26 tháng 1 2017

\(A=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(1+x+x^2\right)}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\left(\frac{-x-1}{\left(1-x\right)\left(x+1\right)}-\frac{x}{\left(1-x\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\frac{-2x-1}{\left(1-x\right)\left(x+1\right)}:\frac{2x+1}{x^2+2x+1}\)

\(A=\frac{-\left(2x+1\right)}{\left(1-x\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}\)

\(A=\frac{-1}{1-x}.\frac{x+1}{1}\)

\(A=\frac{-x-1}{1-x}\)

ghi rõ được không bạn