\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\) với 4<x<8

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

Có: \(\sqrt{x+4\sqrt{x-4}}\)=\(\sqrt{x-4+2\sqrt{x-4}+4}\)=\(\sqrt{\left(\sqrt{x-4}+2\right)^2}\)=\(\sqrt{x-4}\)+2

\(\sqrt{x-4\sqrt{x-4}}\)=\(\sqrt{x-4-4\sqrt{x-4}+4}\)=\(\sqrt{\left(\sqrt{x-4}-2\right)^2}\)=2-\(\sqrt{x-4}\) vì x<8

suy ra x-4<4 \(\Rightarrow\)\(\sqrt{x-4}\)<2\(\Rightarrow\)\(\sqrt{x-4}\)-2<0

Khi đó biểu thức Q trở thành

Q=\(\sqrt{x-4}\)+2+2-\(\sqrt{x-4}\)=4

vậy Q=4

2 tháng 8 2017

\(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right)\div\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\div\dfrac{x-1}{\sqrt{x}}\)

\(=\dfrac{4\sqrt{x}+4x\sqrt{x}-4\sqrt{x}}{\left(x-1\right)}\times\dfrac{\sqrt{x}}{x-1}\)

\(=\dfrac{4x^2}{\left(x-1\right)^2}\)

~ ~ ~

\(\dfrac{4x^2}{\left(x-1\right)^2}=2\)

\(\Leftrightarrow4x^2=2\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2+4x-2=0\)

\(\Leftrightarrow2\left(x+1-\sqrt{2}\right)\left(x+1+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{2}\\x=-1-\sqrt{2}\end{matrix}\right.\) (nhận)

~ ~ ~

\(x=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)\left(4+\sqrt{15}\right)}\)

\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(16-15\right)\left(4+\sqrt{15}\right)}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)

= 5 - 3 = 2

\(M=\dfrac{4x^2}{\left(x-1\right)^2}=16\)

2 tháng 8 2017

dodo2003 Áp dụng công thức \(A\sqrt{B}=\sqrt{A^2B}\left(A\ge0\right)\)

18 tháng 9 2016

a, \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)

b,\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{\left(\sqrt{2}+3\right)^2}-3+\sqrt{2}=\sqrt{2}+3-3+\sqrt{2}=2\sqrt{2}\)

c, \(\sqrt{9x^2}-2x=\sqrt{\left(3x\right)^2}-2x=3x-2x=x\)

d, câu này sai đề rồi , nếu sửa lại phải như này :

\(x-4+\sqrt{16-8x+x^2}=x-4+\sqrt{\left(4-x\right)^2}=x-4+4-x=0\)

23 tháng 6 2017

a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)=\(\sqrt{3}-1-\sqrt{3}=-1\)

b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\) = \(\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)

= \(3+\sqrt{2}-3+\sqrt{2}\) = \(2\sqrt{2}\)

c) \(\sqrt{9x^2}-2x=\sqrt{\left(3x\right)^2}-2x\) = \(\left|3x\right|-2x=-3x-2x\) (x < 0)

= \(-5x\)

d) \(x-4+\sqrt{16-8x+x^2}\) \(\left(x>4\right)\) = \(x-4+\sqrt{\left(4-x\right)^2}\)

= \(x-4+\left|4-x\right|\) = \(x-4-4+x\) ( \(x>4\))

= \(2x-8\)

30 tháng 4 2017

a, Ta có : \(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}\right)^2-2\sqrt{3}\times1+1^2=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}\)

Ta có : \(\sqrt{3}>\sqrt{1}\)(vì 3>1)

\(\Leftrightarrow\sqrt{3}>1\Leftrightarrow\sqrt{3}-1>0\Rightarrow\left|\sqrt{3}-1\right|=\sqrt{3}-1\)

Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)

23 tháng 6 2017

a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)=\(\sqrt{3}-1-\sqrt{3}=-1\)

b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\) = \(\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)

= \(3+\sqrt{2}-3+\sqrt{2}\) = \(2\sqrt{2}\)

d) \(x-4+\sqrt{16-8x+x^2}\) \(\left(x>4\right)\) = \(x-4+\sqrt{\left(4-x\right)^2}\)

= \(x-4+\left|4-x\right|\) = \(x-4-4+x\) (vì \(x>4\))

= \(2x-8\)

a) Ta có: \(A=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(=\sqrt{4-2\cdot2\cdot\sqrt{3}+3}-\sqrt{4+2\cdot2\cdot\sqrt{3}\cdot3}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\)

\(=2-\sqrt{3}-\left(2+\sqrt{3}\right)\)(Vì \(2>\sqrt{3}>0\))

\(=2-\sqrt{3}-2-\sqrt{3}\)

\(=-2\sqrt{3}\)

b) Ta có: \(B=\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\cdot\frac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\)

\(=\left(\frac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}-2\right)}\right)\cdot\frac{\left(\sqrt{x}+2\right)\cdot\left(x-4\right)}{\sqrt{x}}\)

\(=\frac{x+3\sqrt{x}+2-\left(x-3\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}-2\right)}\cdot\frac{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(=\frac{x+3\sqrt{x}+2-x+3\sqrt{x}-2}{\sqrt{x}}\)

\(=\frac{6\sqrt{x}}{\sqrt{x}}=6\)

11 tháng 8 2020

a) Bình phương lên ta đc

\(A^2=7-4\sqrt{3}+7+4\sqrt{3}-2\sqrt{7^2-\left(4\sqrt{3}\right)^2}=14-2=12\)

\(\Rightarrow A=\mp\sqrt{12}\)

17 tháng 10 2022

a: \(P=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

b: ĐểP<15/4 thì P-15/4<0

\(\Leftrightarrow4\left(3\sqrt{x}+8\right)-15\left(\sqrt{x}+2\right)< 0\)

=>12 căn +32-15 căn x+30<0

=>-3 căn x<-62

=>căn x>62/3

=>x>3844/9