Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:\hept{\begin{cases}x^3+1\ne0\\x^3-2x^2\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne2\end{cases}}\)(chỗ chữ và là do OLM thiếu ngoặc 4 cái nên mk để thế nha! trình bày thì kẻ thêm 1 ngoặc nưax)
\(Q=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left[\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right]:\frac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(=1+\frac{\left(x+1\right)+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\frac{4x-2x^2}{x+1}.\frac{1}{x\left(x-2\right)}\)
\(=1-\frac{2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)
b, Với \(x\ne0;x\ne-1;x\ne2\)Ta có:
\(|x-\frac{3}{4}|=\frac{5}{4}\)
*TH1:
\(x-\frac{3}{4}=\frac{5}{4}\Rightarrow x=2\)(ko thảo mãn)
*TH2:
\(x-\frac{3}{4}=-\frac{5}{4}\Rightarrow x=-\frac{1}{2}\)
\(\Rightarrow Q=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)
c,
\(Q=\frac{x-1}{x+1}=1-\frac{2}{x+1}\)
Để Q nguyên thì x+1 phải thuộc ước của 2!! tự làm tiếp dễ rồi!!
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0;x\ne2\\x\ne-1\end{cases}}\)
\(Q=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(\Leftrightarrow Q=1+\left(\frac{x+1}{x^3+1}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right):\frac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(\Leftrightarrow Q=1+\frac{\left(x+1\right)+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{x\left(x-2\right)}{x^2-x+1}\)
\(\Leftrightarrow Q=1+\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(\Leftrightarrow Q=1+\frac{-2x^2+4x}{x\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow Q=1+\frac{-2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow Q=1+\frac{-2}{x+1}\)
\(\Leftrightarrow Q=\frac{x-1}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(ktm\right)\\x=-\frac{1}{2}\left(tm\right)\end{cases}}\)
Thay \(x=-\frac{1}{2}\)vào Q, ta được :
\(Q=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}\)
\(\Leftrightarrow Q=\frac{-\frac{3}{2}}{\frac{1}{2}}\)
\(\Leftrightarrow Q=-3\)
c) Để \(Q\inℤ\)
\(\Leftrightarrow x-1⋮x+1\)
\(\Leftrightarrow x+1-2⋮x+1\)
\(\Leftrightarrow2⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)
Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)
a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.
Thay x=-2 và B ta có :
\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)
b) Rút gọn :
\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)
\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
Xấu nhỉ ??
\(A=\left(\frac{x^2-16}{x-4}+1\right):\left(\frac{x-2}{x-3}+\frac{x+3}{x+1}+\frac{x+2-x^2}{x^2-2x-3}\right)\)
\(=\left(x+5\right):\left(\frac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}+\frac{x+2-x^2}{\left(x-3\right)\left(x+1\right)}\right)\)
\(=\left(x+5\right):\left(\frac{x^2+x-2x-2+x^2-9+x+2-x^2}{\left(x-3\right)\left(x+1\right)}\right)\)
\(=\left(x+5\right):\left(\frac{x^2-9}{\left(x-3\right)\left(x+1\right)}\right)\)
\(=\left(x+5\right):\left(\frac{x+3}{x+1}\right)=\frac{x+3}{\left(x+5\right)\left(x+1\right)}\)
a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )
\(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)
b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x
<=> 1-2x thuộc Ư(2) = {1;2;-1;-2}
Nếu 1-2x = 1 thì 2x = 0 => x= 0
Nếu 1-2x = 2 thì 2x = -1 => x = -1/2
Nếu 1-2x = -1 thì 2x = 2 => x =1
Nếu 1-2x = -2 thì 2x = 3 => x = 3/2
Vậy ....
ĐKXĐ : \(x\ne\pm3\)
a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)
\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)
\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)
\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)
\(A=\frac{4x+1}{2\left(x-3\right)}\)
b) \(\left|x-5\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => ta xét x = 7
\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)
c) Để A nguyên thì 4x + 1 ⋮ 2x - 3
<=> 4x - 6 + 7 ⋮ 2x - 3
<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3
Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3
=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }
=> x thuộc { 2; 1; 5; -2 }
Vậy .....
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)
\(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)
\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)
\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)
b)
Có 2 trường hợp:
T.Hợp 1:
\(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)
thay vào A ta được: A=\(-\frac{13}{8}\)
T.Hợp 2:
\(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)
Vậy không tồn tại giá trị của A tại x=3
Vậy với x=7 thì A=-13/8
c)
\(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)
Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)
Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .
Vậy không có giá trị nguyên nào của x để A nguyên