Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Q=a√a2−b2−(1+a√a2−b2):ba−√a2−b2=a√a2−b2−a2−(a2−b2)b√a2−b2=a√a2−b2−a2−a2+b2b√a2−b2=a−b√a2−
\(a,Q=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\left(\frac{b}{a-\sqrt{a^2-b^2}}\right)\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\left(\frac{\sqrt{a^2-b^2}+a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2+b^2}}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)
\(=\frac{ab-a^2+a^2-b^2}{b\sqrt{a^2-b^2}}\)
\(=\frac{b\left(a-b\right)}{b\sqrt{a^2-b^2}}=\frac{\left(a-b\right)}{\sqrt{\left(a-b\right)\left(a+b\right)}}=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)
\(b.\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\frac{\sqrt{2}.\sqrt{b}}{2\sqrt{b}}=\frac{\sqrt{2}}{2}\)
:") Làm bừa nhezzz
a) \(Q=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2}-b^2}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(\sqrt{a^2-b^2}\right)^2}{b.\left(\sqrt{a^2-b^2}\right)}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\left(\frac{a^2-\left(a^2-b^2\right)}{b.\left(\sqrt{a^2-b^2}\right)}\right)\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{b^2}{b\sqrt{a^2-b^2}}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)
\(=\frac{a-b}{\sqrt{a^2-b^2}}=\frac{a-b}{\sqrt{\left(a-b\right)\left(a+b\right)}}=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)
b) Thay a = 3b vào , ta được :
\(Q=\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\sqrt{\frac{2b}{4b}}=\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)
a. Đề là \(Q=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\) ?
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{b^2}{b\sqrt{a^2-b^2}}\)
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)
\(\Leftrightarrow Q=\frac{a-b}{\sqrt{\left(a-b\right)\left(a+b\right)}}=\sqrt{\frac{a-b}{a+b}}\)
b. Thay a = 3b vào Q, ta được : \(Q=\sqrt{\frac{3b-b}{3b+b}}=\sqrt{\frac{2b}{4b}}=\sqrt{\frac{1}{2}}\)
a: \(Q=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{\sqrt{a^2-b^2}+a}{\sqrt{a^2-b^2}}\cdot\dfrac{a-\sqrt{a^2-b^2}}{b}\)
\(=\dfrac{ab}{b\left(\sqrt{a^2-b^2}\right)}-\dfrac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)
\(=\dfrac{ab-a^2+a^2-b^2}{b\sqrt{a^2-b^2}}=\dfrac{ab-b^2}{b\sqrt{a^2-b^2}}=\dfrac{a-b}{\sqrt{a^2-b^2}}\)
b: Khi a=3b thì \(Q=\dfrac{3b-b}{\sqrt{9b^2-b^2}}=\dfrac{2b}{\sqrt{8b^2}}=\dfrac{2b}{2\sqrt{2}\cdot b}=\dfrac{1}{\sqrt{2}}\)
\(A=a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}\)
\(A=a^2+\dfrac{1}{16a^2}+b^2+\dfrac{1}{16b^2}+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)
\(A\ge2\sqrt{a^2\cdot\dfrac{1}{16a^2}}+2\sqrt{b^2\cdot\dfrac{1}{16b^2}}+\dfrac{15}{16}\cdot2\cdot\sqrt{\dfrac{1}{a^2b^2}}\)
\(A\ge1+\dfrac{15}{8ab}\ge1+\dfrac{15}{2\left(a+b\right)^2}\ge\dfrac{17}{2}\)
"="<=>x=y=0,5
\(3a^2+3b^2=10ab\Rightarrow3a^2-10ab+3b^2=0\Rightarrow3ab-9ab-ab-3b^2=0\)
\(=>3a\left(a-3b\right)-b\left(a-3b\right)=0\Rightarrow\left(3a-b\right)\left(3b-a\right)=0\)
=>3a =b hoặc 3b = a ( loại b>a>0 )
thay 3a = b ta có
\(P=\frac{3a-b}{3a+b}=\frac{2a}{4a}=\frac{1}{2}\)
Thay a = 3b vào ta được: