\(P=\sqrt{x-2}+3\).Hãy tìm giá trị của x để P đạt GTNN. Tính GTNN đó

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2016

em mới học lớp 6 khó quá 

1 tháng 11 2020

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)

=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2

Đề sai à --

5 tháng 11 2020

kkk. thế mới hỏi chứ. đề đấy: đố giải được

21 tháng 11 2017

Bạn ơi bài này có cho thêm đk x > 0 ko ?

21 tháng 11 2017

có pn nha

14 tháng 8 2020

Ta có: \(A=\frac{\sqrt{x}+7}{\sqrt{x}+4}=\frac{\left(\sqrt{x}+4\right)+3}{\sqrt{x}+4}=1+\frac{3}{\sqrt{x}+4}\)

a) Vì \(\sqrt{x}+4\ge4>3\left(\forall x\right)\)

\(\Rightarrow\frac{3}{\sqrt{x}+4}\) luôn không nguyên

=> A luôn không nguyên

b) Không thể tìm được giá trị nhỏ nhất của A, ta chỉ có thể tìm được GTLN:

\(\sqrt{x}+4\ge4\left(\forall x\right)\)

\(\Rightarrow\frac{3}{\sqrt{x}+4}\le\frac{3}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max(A) = 7/4 khi x = 0

22 tháng 11 2017

x = 2007 and 2008 nha bn

P=(√x+3√x+2+4xx+3x+9x−√x−6):(√xx+3+2√x+3x+5√x+6)

=[(√x+3)(√x−3)(√x+2)(√x−3)+4xx+3x+9(√x+2)(√x−3)]:[√x(√x+2)(√x+3)(√x+2)+2√x+3(√x+3)(√x+2)]

=x−9+4xx+3x+9(√x+2)(√x−3):x+2√x+2√x+3(√x+3)(√x+2)

=4xx+4x(√x+2)(√x−3)⋅(√x+3)(√x+2)(√x+1)(√x+3)

=4x(√x+1)(√x−3)(√x+1)=4xx−3

b/ P=48⇔4xx−3=48

⇔4x=48√x−144

⇔4x−48√x+144=0

⇔(2√x−12)2=0

⇔2√x−12=0⇔√x=6⇔x=36(TM)

Vậy................

13 tháng 1 2022
Cái gì ê? Chẳng hiểu?
26 tháng 7 2018

ko bit