\(\left(x\right)=\dfrac{20x^2+120x+180}{\left(3x+5\right)^2-4x^2}+\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2022

\(P=\dfrac{20\left(x^2+6x+9\right)}{\left(3x+5+2x\right)\left(3x+5-2x\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3+x\right)\left(2x+3-x\right)}{3\left(x+3\right)\left(x+5\right)}\)

\(=\dfrac{20\left(x+3\right)^2}{5\left(x+1\right)\left(x+5\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(x-5\right)\cdot5\left(x+1\right)}-\dfrac{3\left(x+1\right)\left(x+3\right)}{3\left(x+3\right)\left(x+5\right)}\)

\(=\dfrac{5\left(x+3\right)^2}{\left(x+1\right)\left(x+5\right)}+\dfrac{\left(x+5\right)}{x+1}-\dfrac{x+1}{x+5}\)

\(=\dfrac{5x^2+30x+45+x^2+10x+25-x^2-2x-1}{\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{5x^2+38x+69}{\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{5x^2+38x+69}{x^2+6x+5}\)

Để P là số nguyên thì \(5x^2+30x+25+8x+34⋮x^2+6x+5\)

=>\(8x+34⋮x^2+6x+5\)

=>\(\left\{{}\begin{matrix}8x+34⋮x+1\\8x+34⋮x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x+8+26⋮x+1\\8x+40-6⋮x+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+1\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\\x+5\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\end{matrix}\right.\)

=>\(x\in\left\{-2;1\right\}\)

a: \(A=\left(\dfrac{6x+4}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}-\dfrac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\dfrac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)

\(=\dfrac{6x+4-3x+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\cdot\left(1-\sqrt{3x}\right)^2\)

\(=\dfrac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)

b: Để A là số nguyên thì \(3x-2\sqrt{3x}+1⋮\sqrt{3x}-2\)

=>\(\sqrt{3x}-2\in\left\{1;-1;3;-3\right\}\)

=>\(3x\in\left\{9;1;25\right\}\)

hay x=3

19 tháng 1 2019

a ) ĐK : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^{^2}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{x+4\sqrt{x}+3}\)

\(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)

 

b: \(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)

 

15 tháng 6 2017

Lần sau ghi dấu ra xíu nhé :v

a) Đặt \(\sqrt{x}=a\Rightarrow B=\left(\dfrac{a}{a+4}+\dfrac{4}{a-4}\right):\dfrac{a^2+16}{a+2}\)

Quy đồng,rút gọn : \(B=\dfrac{a+2}{a^2-16}\Rightarrow B=\dfrac{\sqrt{x}+2}{x-16}\)

b) \(B\left(A-1\right)=\dfrac{\sqrt{x}+2}{x-16}\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)=\dfrac{2}{x-16}\)

x - 16 là ước của 2 => \(x\in\left\{14;15;17;18\right\}\)

mới làm quen toán 9 ;v có gì k rõ ae chỉ bảo nhé :))

15 tháng 6 2017

dung ko the ban, sao ngan the ?

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).