\(P=\left(\frac{a-1}{3a+\left(a-1\right)^2}-\frac{1-3a+a^2}{a^3-1}-\frac{1}{a-1}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

\(P=\frac{1}{a^2+a+1}\) ( với a khác 1 ) 

=> \(\frac{1}{P}=a^2+a+1=a^2+2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(=\left(a+\frac{1}{2}\right)^2+\frac{3.}{4}\ge\frac{3}{4}\) vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)

Dấu "=" xảy ra <=> \(\left(a+\frac{1}{2}\right)^2=0\Leftrightarrow a=-\frac{1}{2}\)( thỏa mãn )

Vậy GTNN của \(\frac{1}{P}=\frac{3}{4}\)đạt tại  a = - 1/2.

30 tháng 1 2019

Câu 3 : 

\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\)  ĐKXđ : \(x\ne\pm1\)

\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)

\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)

\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)

\(A=\frac{10}{x+1}\)

30 tháng 1 2019

\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)

ĐKXđ : \(x\ne0;x\ne3\)

\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)

\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)

\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)

12 tháng 3 2020

Đề thiếu x nguyên nhé bạn :)

\(x^2+10x+10=\left(x^2+10x+25\right)-15\)

Đặt \(x^2+10x+10=a^2\left(a\in Z\right)\)

Khi đó:\(\left(x+5\right)^2-a^2=15\)

\(\Leftrightarrow\left(x+5-a\right)\left(x+5+a\right)=15\)

Đến đây bạn lập ước ra ngay nhé ! Có điều hơi mệt tí,hihi !

sai rồi bạn. phải là \(a^2-\left(x+5\right)^2\)chứ

11 tháng 2 2020

Đề sai ! Sửa nhé :

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm2\end{cases}}\)

\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(\Leftrightarrow A=\left(\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x-2}\right)\)

\(\Leftrightarrow A=\frac{2\left(x+2\right)-4}{\left(x+2\right)^2}:\frac{2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\frac{2x+4-4}{\left(x+2\right)^2}.\frac{\left(x+2\right)\left(x-2\right)}{-x}\)

\(\Leftrightarrow A=\frac{2x\left(x-2\right)}{-x\left(x+2\right)}\)

\(\Leftrightarrow A=-\frac{2\left(x-2\right)}{x+2}\)

b) Để \(A\le-2\)

\(\Leftrightarrow-\frac{2\left(x-2\right)}{x+2}\le-2\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{x+2}\ge2\)

\(\Leftrightarrow\frac{x-2}{x+2}\ge1\)

\(\Leftrightarrow x-2\ge x+2\)

\(\Leftrightarrow-2\ge2\)(ktm)

Vậy để \(A\le-2\Leftrightarrow x\in\varnothing\)

11 tháng 2 2020

a.

\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(A=\left(\frac{2.\left(x^2+8\right)}{\left(x+2\right).\left(x^2+8\right)}-\frac{4\left(x+2\right)}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{2-x}\right)\)

\(A=\left(\frac{2x^2+8-4x+8}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-1}{x-2}\right)\)

\(A=\left(\frac{2x\left(x-2\right)+16}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-x-2}{\left(x-2\right)\left(x+2\right)}\right)\)

\(A=\left(\frac{2x\left(x-2\right)+16}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\right)\)

\(A=\left(\frac{\left(2x\left(x-2\right)+16\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x^2+8\right)\left(-x\right)}\right)\)

\(A=\frac{\left(2x\left(x-2\right)+16\right)\left(x-2\right)}{\left(x^2+8\right)\left(-x\right)}\)

\(A=\frac{\left(2x^2-4x+16\right)\left(x-2\right)}{\left(x^2+8\right)\left(-x\right)}\)

\(A=\frac{\left(2x^3-4x-4x-4x^2+8x+16x-32\right)}{-x^3+8}\)

\(A=\frac{2x^3-4x^2+16x-32}{-x^3+8}\)

30 tháng 1 2019

\(\text{Giải}\)

\(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{32}{4x^2-16}\right):\frac{x-1}{x-2}\)

\(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)

\(A=\left(\frac{\left(x+2\right)\left(2x+4\right)}{\left(2x-4\right)\left(2x+4\right)}-\frac{\left(2-x\right)\left(2x-4\right)}{\left(2x-4\right)\left(2x+4\right)}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)

\(A=\left(\frac{2x^2+8x+8}{\left(2x-4\right)\left(2x+4\right)}-\frac{4x^2-8+4x}{\left(2x-4\right)\left(2x+4\right)}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)

\(A=\frac{2x^2+8x+8-4x^2+8-4x+32}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}\)

\(A=\frac{4x-2x^2+48}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}\)

\(A=\frac{2\left(2x-x^2+24\right)}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}=\frac{2\left(2x-x^2+24\right)\left(x-2\right)}{\left(2x-4\right)\left(2x+4\right)\left(x-1\right)}\)

\(=\frac{2\left(2x-x^2+24\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)\left(x-1\right)}=\frac{2x-x^2+24}{\left(x-2\right)\left(x-1\right)}\)

c, Bạn tự giải hệ pt nhé :)

30 tháng 11 2015

\(a.\) Với  \(a+b+c=0\)  thì  \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)

\(b.\)   Công thức tổng quát:  \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Ta có:

\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)

\(\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x+1}-\frac{1}{x+2}\)

\(\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{x+2}-\frac{1}{x+3}\)

\(\frac{1}{\left(x+3\right)\left(x+4\right)}=\frac{1}{x+3}-\frac{1}{x-4}\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+4}-\frac{1}{x+5}\)

Do đó, suy ra được:  \(A=\frac{1}{x}-\frac{1}{x+5}=\frac{x+5-x}{x\left(x+5\right)}=\frac{5}{x\left(x+5\right)}\)

 

 

30 tháng 10 2020

a) Đk: x > 0 và x khác +-1

Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)

A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)

A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)

A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)

b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)

Vậy MaxA = 1/4 <=> x = 2

7 tháng 3 2020

Câu 2:

a) \(ĐKXĐ:x\ne1\)

 \(A=\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\div\left(1-\frac{2x}{x^2+1}\right)\)

\(\Leftrightarrow A=\left(\frac{1}{x-1}-\frac{2x}{\left(x-1\right)\left(x^2+1\right)}\right)\div\frac{x^2-2x+1}{x^2+1}\)

\(\Leftrightarrow A=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\div\frac{\left(x-1\right)^2}{x^2+1}\)

\(\Leftrightarrow A=\frac{\left(x-1\right)^2\left(x^2+1\right)}{\left(x-1\right)\left(x^2+1\right)\left(x-1\right)^2}\)

\(\Leftrightarrow A=\frac{1}{x-1}\)

b) Để A > 0

\(\Leftrightarrow x-1>0\)(Vì\(1>0\))

\(\Leftrightarrow x>1\)

BÀI 1: Cho biết biểu thức A = \(\frac{x+1}{3x-x^2}:\left(\frac{3+x}{3-x}-\frac{3-x}{3+x}-\frac{12x^2}{x^2-9}\right)\)a) Rút gọn \(A\)                            b) Tính giá trị của A khi \(|2x-1|=5\)                          c) Tìm x để \(A< 0\) BÀI 2: Cho biểu thức B = \(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)a) Rút gọn B                            b) Tìm x để \(B>0\)                     ...
Đọc tiếp

BÀI 1: Cho biết biểu thức A = \(\frac{x+1}{3x-x^2}:\left(\frac{3+x}{3-x}-\frac{3-x}{3+x}-\frac{12x^2}{x^2-9}\right)\)

a) Rút gọn \(A\)                            b) Tính giá trị của A khi \(|2x-1|=5\)                          c) Tìm x để \(A< 0\)

 

BÀI 2: Cho biểu thức B = \(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

a) Rút gọn B                            b) Tìm x để \(B>0\)                                                               c) Tìm x nguyên để B nguyên dương

 

BÀI 3: Cho biểu thứ \(\left(\frac{2x}{2x^2-5x+3}-\frac{5}{2x-3}\right):\left(3+\frac{2}{1-x}\right)\)

a) Rút gọn C                            b) Tìm x để \(C=\frac{1}{x^2}\)                                                           c) Tìm x để C nhận giá trị không âm

 

BÀI 4: Cho biểu thức D = \(\left(\frac{2x}{x+3}+\frac{x}{x-3}-\frac{3x^2+3}{x^2-9}\right):\left(\frac{2x-2}{x-3}-1\right)\)

a) Rút gọn D                           b) Tìm x để \(D< -\frac{1}{2}\)                                                 

c) Tìm GTNN của \(M=D.\left(x+3\right)\left(1-x-x^2\right)\)

 

 

 

 

 

 

 

0