\(P=\left(\dfrac{2}{x+2}-\dfrac{x}{2-x}-\dfrac{x^2}{x^2-4}\right):\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

a, \(P=\left(\dfrac{2}{x+2}-\dfrac{x}{2-x}-\dfrac{x^2}{x^2-4}\right):\dfrac{4-4x}{x^2+2x}\)

\(=\left(\dfrac{2}{x+2}+\dfrac{-x}{x-2}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{4-4x}{x^2+2x}\)

\(=\left(\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{4-4x}{x^2+2x}\)

\(=\left(\dfrac{2\left(x-2\right)-x\left(x+2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{4-4x}{x^2+2x}\)

\(=\left(\dfrac{2x-4+x^2+2x-x^2}{\left(x-2\right)\left(x+2\right)}\right).\dfrac{x^2+2x}{4-4x}\)

\(=\dfrac{4x-4}{\left(x-2\right)\left(x+2\right)}.\dfrac{-x\left(x+2\right)}{4x-4}\)

\(=-\dfrac{x}{x-2}\)

b, Để P có nghĩa

\(\Leftrightarrow x-2\ne0\)

\(\Leftrightarrow x\ne2\)

Thay x= -8 vào biểu thức P ,có :

\(-\dfrac{-8}{-8-2}=-\dfrac{-8}{-10}=\dfrac{8}{10}=-\dfrac{4}{5}\)

Vậy tại x = -8 giá trị của P là

c, Để P có giá trị nguyên

\(\Leftrightarrow-x⋮x-2\)

\(\Leftrightarrow-x+2-2⋮x-2\)

\(\Leftrightarrow-\left(x-2\right)-2⋮x-2\)

\(\Leftrightarrow2⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)

\(x-2\) 1 2 -1 -2
x 3 4 1 0

Vậy \(x\in\left\{0;1;3;4\right\}\) thì P có giá trị nguyên

18 tháng 11 2017

, cảm ơn nhiều nha. Câu c nghĩ mãi ko ra

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

11 tháng 12 2018

để A xác định

\(\Rightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x^2\ne4\end{cases}}\Rightarrow x\ne\pm2\)

\(A=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{x^2-4}\)

\(A=\frac{4.x-8}{\left(x+2\right).\left(x-2\right)}+\frac{3.x+6}{\left(x-2\right).\left(x+2\right)}-\frac{5x-6}{\left(x-2\right).\left(x+2\right)}\)

\(A=\frac{4x-8+3x+6-5x+6}{\left(x+2\right).\left(x-2\right)}=\frac{2.\left(x+2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{2}{x-2}\)

11 tháng 12 2018

\(\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{x^2-4}=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{4x-8}{\left(x+2\right)\left(x-2\right)}+\frac{3x+4}{\left(x-2\right)\left(x+2\right)}-\frac{5x-6}{\left(x-2\right)\left(x+2\right)}=\frac{4x-8+3x+4-5x+6}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{2x+2}{\left(x+2\right)\left(x-2\right)}=\frac{2x+2}{x^2-4}\)

C, \(x=4\Rightarrow A=\frac{2x+2}{x^2-4}=\frac{-6}{12}=\frac{-1}{2}\)

d, \(A\inℤ\Leftrightarrow2x+2⋮x^2-4\Leftrightarrow2x^2+2x-2x^2+8⋮x^2-4\Leftrightarrow2x+8⋮x^2-4\)

\(\Leftrightarrow2x^2+8x⋮x^2-4\Leftrightarrow16⋮x^2-4\)

\(x^2-4\inℕ\)

\(\Rightarrow x^2\in\left\{0;4;12\right\}\)

Thử lại thì 12 ko là số chính phương vậy x=0 hoặc x=2 thỏa mãn

mk học lớp 6 mong mn thông cảm nếu có sai sót

18 tháng 5 2018

Giúp với

9 tháng 2 2021

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne2\\x\ne3\end{matrix}\right.\)

Ta có : \(P=\dfrac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{4}{\left(x-2\right)\left(x-3\right)}-\dfrac{x-2}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{2x\left(x-3\right)+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x-x+6}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x-3}{x-3}\)

b, Ta có : \(P=\dfrac{2x-3}{x-3}=\dfrac{2x-6+3}{x-3}=2+\dfrac{3}{x-3}\)

- Để P là số nguyên \(\Leftrightarrow x-3\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{4;3;6;0\right\}\)

Vậy ...

9 tháng 2 2021

a ĐKXĐ : \(x\ne2,x\ne3\)

\(\Rightarrow P=\dfrac{2x\left(x-3\right)+4-\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{x^2-5x+6}\)b Ta có P = \(\dfrac{2x^2-7x+6}{x^2-5x+6}=\dfrac{x^2-5x+6+x^2-2x}{x^2-5x+6}=1+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=1+\dfrac{x}{x-3}\)

Để P\(\in Z\) \(\Leftrightarrow1+\dfrac{x}{x-3}\in Z\) \(\Rightarrow\dfrac{x}{x-3}\in Z\) \(\Rightarrow x⋮x-3\) \(\Rightarrow x-3+3⋮x-3\)

\(\Rightarrow3⋮x-3\) \(\Rightarrow\left(x-3\right)\in\left\{-3;-1;1;3\right\}\) \(\Rightarrow x\in\left\{0;2;4;6\right\}\) 

Thử lại ta thấy đúng 

Vậy...

10 tháng 6 2018

a, \(Đkxđ:x\ne-3;x\ne2\)

b,\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)

\(=\dfrac{x+2}{x+3}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{1}{x-2}\)

\(=\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)\(=\dfrac{x-4}{x-2}\)

c,\(A=-\dfrac{3}{4}\) khi \(\dfrac{x-4}{x-2}=-\dfrac{3}{4}\)

\(\Leftrightarrow\left(x-4\right).4=-3\left(x-2\right)\)

\(\Leftrightarrow4x-16=-3x+6\)

\(\Leftrightarrow7x=22\)

\(\Leftrightarrow x=\dfrac{22}{7}\)

Vậy khi \(x=\dfrac{22}{7}\) thì \(A=-\dfrac{3}{4}\)

10 tháng 6 2018

a) ĐKXĐ : \(\left\{{}\begin{matrix}x+3\ne0\\2-x\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)

b) \(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}-\dfrac{1}{x-2}\)

\(A=\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(A=\dfrac{-x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\dfrac{x-4}{x-2}\)

c) Để \(A=\dfrac{-3}{4}\) thì :

\(A=\dfrac{x-4}{x-2}=\dfrac{-3}{4}\)

\(\Rightarrow\dfrac{x-4}{x-2}+\dfrac{3}{4}=0\)

\(\Rightarrow\dfrac{4\left(x-4\right)}{4\left(x-2\right)}+\dfrac{3\left(x-2\right)}{4\left(x-2\right)}=0\)

\(\Rightarrow4x-16+3x-6=0\)

\(\Rightarrow7x+22=0\)

\(\Rightarrow x=\dfrac{-22}{7}\)

d) Ta có : \(A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}=1-\dfrac{2}{x-2}\)

\(1\in Z\) để \(A\in Z\) thì \(\dfrac{2}{x-2}\in Z\)

\(\Rightarrow x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Có : \(\left\{{}\begin{matrix}x-2=1=>x=3\\x-2=-1=>x=1\\x-2=2=>x=4\\x-2=-2=>0\end{matrix}\right.\)

Vậy để A nhận gt nguyên thì x \(\in\left\{3;1;4;0\right\}\)

e) \(x^2-9=0\)

\(\Rightarrow\left(x+3\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(loại\right)\\x=3\end{matrix}\right.\)

Thay vào A ta có :

\(A=\dfrac{x-4}{x-2}=\dfrac{3-4}{3-2}=-1\)

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

b: \(A=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)

c: Thay x=2 vào A, ta được:

\(A=\dfrac{2+1}{2-1}=3\)

d: Để A=2 thì x+1=2x-2

=>-x=-3

hay x=3(nhận)