Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé
a, \(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
\(=\frac{x\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\frac{2\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x\sqrt{x}-3-2\left(x-6\sqrt{x}+9\right)-\left(x+4\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x\sqrt{x}-24-3x+8\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{x+8}{\sqrt{x}+1}\)
b, Ta co : \(x=14-6\sqrt{5}=14-2.3.\sqrt{5}\)
\(=3-2.3\sqrt{5}+\left(\sqrt{5}\right)^2=\left(3-\sqrt{5}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
Thay vào P ta được :
\(P=\frac{14-6\sqrt{5}+8}{3-\sqrt{5}+1}=\frac{22-6\sqrt{5}}{4-\sqrt{5}}=\frac{2\left(29-\sqrt{5}\right)}{11}\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
ĐKXĐ : \(x\ge0;x\ne9\)
a) \(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
\(P=\frac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{x+8}{\sqrt{x}+1}\)( thu gọn tử xong rút gọn )
b) \(x=14-6\sqrt{5}=\left(\sqrt{5}-3\right)^2\)\(\Rightarrow\sqrt{x}=3-\sqrt{5}\)
Khi đó : \(P=\frac{58-2\sqrt{5}}{11}\)
c) \(P=\frac{x+8}{\sqrt{x}+1}=\frac{x-1+9}{\sqrt{x}+1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+9}{\sqrt{x}+1}=\sqrt{x}-1+\frac{9}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\ge2\sqrt{9}-2=4\)
Dấu " = " xảy ra \(\Leftrightarrow\sqrt{x}+1=\frac{9}{\sqrt{x}+1}\Leftrightarrow x=4\)
Vậy GTNN của P là 4 \(\Leftrightarrow x=4\)