\(P=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{399}{400}.\)Chứng tỏ rằng<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

\(P=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{399}{400}\)

\(\Rightarrow P< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{400}{401}\)

\(\Rightarrow P^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{399}{400}.\frac{400}{401}\)

\(\Rightarrow P^2< \frac{1}{401}< \frac{1}{400}=\frac{1}{20^2}\)

\(\Rightarrow P< \frac{1}{20}\)

9 tháng 5 2019

P=1/2.3/4.5/6.....399/400

=>P<2/3.4/5......400/401

=>P2<1/2.2/3.3/4......398/399.399/400.400/401

=1/401<1/400=(1/20)2

=>P<1/20

3 tháng 5 2018

em hỏi thầy cô đây là toán chuyên

13 tháng 5 2019

\(P=\frac{1}{2}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}......\frac{399}{400}\)

\(P=\frac{1.3.4.5....399}{2.4.5.6.....400}\)

\(P=\frac{1.3}{2.400}\)

\(P=\frac{3}{800}\)

Vì \(\frac{3}{800}< \frac{40}{800}\)

\(\Rightarrow P< \frac{40}{800}\)

\(\Rightarrow P< \frac{1}{20}\left(đpcm\right)\)

13 tháng 5 2019

Ta co:

\(P=\frac{1}{2}.\frac{3.4.5...399}{4.5.6...400}\)

\(\Leftrightarrow P=\frac{1}{2}.\frac{3}{400}=\frac{3}{800}< \frac{3}{600}=\frac{1}{20}\)

\(\Rightarrow P< \frac{1}{20}\left(dpcm\right).\)

26 tháng 4 2016

c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)

\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)

\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

26 tháng 4 2016

1/

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

A=1/1-1/100

Vì 1/100>0

-->1/1-1/100<1

-->A<1