Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia
1. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=2+\sqrt{3}-2+\sqrt{3}=VP\)
Bài 1.
Ta có : \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{3+4\sqrt{3}+4}-\sqrt{3-4\sqrt{3}+4}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)
\(=\sqrt{3}+2-\left(2-\sqrt{3}\right)\)
\(=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\left(đpcm\right)\)
1) Bạn đánh nhầm \(\sqrt{x}+3\rightarrow\sqrt{x+3}\); \(\sqrt{x}-3\rightarrow\sqrt{x-3}\)
Sửa : \(ĐKXĐ:x\ne\pm\sqrt{3}\)
a) \(M=\frac{x-\sqrt{x}}{x-9}+\frac{1}{\sqrt{x}+3}-\frac{1}{\sqrt{x}-3}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
b) Để \(M=\frac{3}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{4}\)
\(\Leftrightarrow4\sqrt{x}+8=3\sqrt{x}+9\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)(tm)
Vậy để \(A=\frac{3}{4}\Leftrightarrow x=1\)
c) Khi x = 4
\(\Leftrightarrow M=\frac{\sqrt{4}+2}{\sqrt{4}+3}\)
\(\Leftrightarrow M=\frac{2+2}{2+3}\)
\(\Leftrightarrow M=\frac{4}{5}\)
Vậy khi \(x=4\Leftrightarrow M=\frac{4}{5}\)
DKXD: \(x\ge0;x\ne1\)
\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{2}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\left(\frac{x-\sqrt{x}+1}{x+1}\right)\)
\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\frac{x-\sqrt{x}+1}{x+1}\)
\(=\frac{\sqrt{x}-1}{x+1}.\frac{x-\sqrt{x}+1}{x+1}\)
\(=\frac{\sqrt{x}^3+1}{\left(x+1\right)^2}\)
b) \(\sqrt{x}^3+1>0;\left(x+1\right)^2>0\) mọi x
\(\Rightarrow A>0\forall x\ge0;x\ne1\)
\(a,x=7-4\sqrt{3}=4-2.2\sqrt{3}+3\) (Thỏa mãn ĐKXĐ)
\(=\left(2-\sqrt{3}\right)^2\)
\(B=\frac{2}{\sqrt{x}-2}=\frac{2}{\sqrt{\left(2-\sqrt{3}\right)^2}-2}\)
\(=\frac{2}{2-\sqrt{3}-2}=-\frac{2\sqrt{3}}{3}\)
\(b,P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\)
\(=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(=\frac{2}{\sqrt{x}-2}:\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{2}{\sqrt{x}-2}:\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{2}{\sqrt{x}-2}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(P=\frac{4}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{4}{3}\)
\(\Leftrightarrow3\left(\sqrt{x}+2\right)=4\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow3\sqrt{x}+6=4\sqrt{x}+4\)
\(\Leftrightarrow6-4=4\sqrt{x}-3\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(ko thỏa mãn ĐKXĐ)
=>pt vo nghiệm
d,\(\left(\sqrt{x}+1\right)P-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\frac{\sqrt{x}+2}{\sqrt{x}+1}-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)
\(\Leftrightarrow\sqrt{x}+2-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)
\(\Leftrightarrow-4\sqrt{x-1}+28=-6x+10\sqrt{5x}\)
\(\Leftrightarrow x=5\)
tính 2 cái sau trước là ra mẫu chung
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
vãi