Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)\)
\(=x^2y+\dfrac{1}{4}x^2+y^2+\dfrac{1}{4}y+x^2y^2+\dfrac{3}{4}y+\dfrac{1}{4}\)
\(=x^2y+x^2y^2+y^2+y+\dfrac{1}{4}x^2+\dfrac{1}{4}\)
\(=y\left(x^2+1\right)+y^2\left(x^2+1\right)+\dfrac{1}{4}\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(y+\dfrac{1}{2}\right)^2\)
\(C=x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\)
\(=x^2y^2+1+x^2-x^2y-y+y^2\)
\(=x^2y^2-y+x^2+y^2-x^2y+1\)
\(=y^2\left(x^2+1\right)-y\left(x^2+1\right)+x^2+1\)
\(=\left(x^2+1\right)\left(y^2-y+1\right)\)
=>\(A=\dfrac{y^2+y+\dfrac{1}{4}}{y^2-y+1}\)
b: \(=\dfrac{y^2-y+1+2y-\dfrac{3}{4}}{y^2-y+1}=1+\dfrac{2y-\dfrac{3}{4}}{y^2-y+1}>=1\)
Dấu = xảy ra khi y=3/8
\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)
\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)
\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)
a: \(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right):\dfrac{x+y}{xy}\)
\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\cdot\dfrac{xy}{x+y}\)
\(=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\)
b: \(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x-y}{2y}\)
\(=\dfrac{4xy+4y^2}{2\left(x+y\right)}\cdot\dfrac{1}{2y}=\dfrac{4y\left(x+y\right)}{4y\left(x+y\right)}=1\)
\(A=\dfrac{x^2}{\left(x+y\right)\left(1-y\right)}-\dfrac{y^2}{\left(x+y\right)\left(1+x\right)}-\dfrac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)đkxđ: \(y\ne1;x\ne-1;x\ne-y\)\(=\dfrac{x^2\left(1+x\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}-\dfrac{y^2\left(1-y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}-\dfrac{x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)\(=\dfrac{x^2+x^3-y^2+y^3-x^3y^2-x^2y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(=\dfrac{\left(x^3+y^3\right)+\left(x^2-y^2\right)-\left(x^3y^2+x^2y^3\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x+y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2+x-y-x^2y^2\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)\(=\dfrac{\left(x^2+x\right)-\left(xy+y\right)+\left(y^2-x^2y^2\right)}{\left(1-y\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)-y\left(x+1\right)-y^2\left(x-1\right)\left(x+1\right)}{\left(1-y\right)\left(x+1\right)}\) \(=\dfrac{\left(x+1\right)\left(x-y-y^2x+y^2\right)}{\left(1-y\right)\left(x+1\right)}\)
\(=\dfrac{-\left(y-y^2\right)+\left(x-y^2x\right)}{1-y}\)
\(=\dfrac{-y\left(1-y\right)+x\left(1-y\right)\left(1+y\right)}{1-y}\)
\(=\dfrac{\left(1-y\right)\left(x+xy-y\right)}{1-y}=x+xy-y\)