\(a-\left(\frac{1}{\sqrt{a}-\sqrt{a-1}}-\frac{1}{\sqrt{a}+\sqrt{a-1}}\right);\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

\(P=a-\left(\frac{1}{\sqrt{a}-\sqrt{a-1}}-\frac{1}{\sqrt{a}+\sqrt{a-1}}\right)\)

\(P=a-\frac{\sqrt{a}+\sqrt{a-1}-\sqrt{a}+\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}=a-\frac{2\sqrt{a-1}}{a-a+1}=a-2\sqrt{a-1}\)

Ta có:

\(a-2\sqrt{a-1}=a-1-2\sqrt{a-1}+1=\left(\sqrt{a-1}-1\right)^2\ge0\)(đúng)

16 tháng 4 2019

ủa sao bằng \(\left(\sqrt{a-1}-1\right)^2\) được v bạn ? phải là : \(\left(\sqrt{a-1}-1\right)\left(\sqrt{a-1}+1\right)\) chứ??

14 tháng 5 2021

Ta có:

\(A=x-\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{1}{\sqrt{x}+\sqrt{x-1}}\right)\)

\(A=x-\frac{\sqrt{x}+\sqrt{x-1}-\sqrt{x}+\sqrt{x-1}}{\left(\sqrt{x}-\sqrt{x-1}\right)\left(\sqrt{x}+\sqrt{x-1}\right)}\)

\(A=x-\frac{2\sqrt{x-1}}{x-x+1}\)

\(A=x-2\sqrt{x-1}\)

\(A=\left(x-1\right)-2\sqrt{x-1}+1\)

\(A=\left(\sqrt{x-1}-1\right)^2\ge0\left(\forall x\ge1\right)\)

=> đpcm

28 tháng 5 2021

c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)

28 tháng 5 2021

M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu

a,

\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

b,

\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)

\(=\left(a-b\right)2b=2ab-2b^2\)

16 tháng 10 2016

\(P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)

\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

16 tháng 10 2016

\(=\frac{\sqrt{a}-2}{\sqrt{a}}\)

21 tháng 6 2017

     \(T=a-\left(\frac{\sqrt{a}+\sqrt{a-1}-\sqrt{a}+\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}\right)\)

          \(=a-\left(\frac{2\sqrt{a-1}}{a-a+1}\right)=a-2\sqrt{a-1}\)

            \(=a-1-2\sqrt{a-1}+1\)

             \(=\left(\sqrt{a-1}\right)^2-2\sqrt{a-1}+1\)

              \(=\left(\sqrt{a-1}-1\right)^2\)

    \(T=\left(\sqrt{a-1}-1\right)^2\ge0,\forall a\in R\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2020

Lời giải:

Yêu cầu 1:

\(\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-(\sqrt{5}+3)=\frac{\sqrt{5}(\sqrt{5}+3)}{\sqrt{5}}+\frac{\sqrt{3}(\sqrt{3}+1)}{\sqrt{3}+1}-(\sqrt{5}+3)\)

\(=\sqrt{5}+3+\sqrt{3}-(\sqrt{5}+3)=\sqrt{3}\) (đpcm)

---------

Yêu cầu 2:

\(P=a-\frac{\sqrt{a}+\sqrt{a-1}-\sqrt{a}+\sqrt{a-1}}{(\sqrt{a}-\sqrt{a-1})(\sqrt{a}+\sqrt{a-1})}=a-\frac{2\sqrt{a-1}}{a-(a-1)}=a-2\sqrt{a-1}\)

\(=(a-1)-2\sqrt{a-1}+1=(\sqrt{a-1}-1)^2\geq 0\) với mọi $a\geq 1$

Ta có đpcm.

21 tháng 8 2019

a/ĐK: \(a\ge0;a\ne1\)
Ta có: P\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}:\left(\frac{1}{\sqrt{a}+1}+\frac{1}{\sqrt{a}-1}\right)=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\frac{\sqrt{a}+1}{\sqrt{a}-1}\times\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}=\frac{\left(\sqrt{a}+1\right)^2}{2\sqrt{a}}\)

21 tháng 8 2019

Rút gọn biểu thức chứa căn bậc haiRút gọn biểu thức chứa căn bậc hai