Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐK: \(x\ge0,x\ne49\)
\(M=\frac{3\left(\sqrt{x}+7\right)-\left(\sqrt{x}-7\right)}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}:\frac{2\sqrt{x}+6}{x-49}\)
\(=\frac{2\sqrt{x}+28}{x-49}.\frac{x-49}{2\sqrt{x}+6}=\frac{2\sqrt{x}+28}{2\sqrt{x}+6}\)
b. M nguyên \(\Leftrightarrow\frac{2\sqrt{x}+28}{2\sqrt{x}+6}\in Z\Rightarrow\frac{2\sqrt{x}+6+22}{2\sqrt{x}+6}\in Z\Rightarrow1+\frac{22}{2\sqrt{x}+6}\in Z\Rightarrow\frac{22}{2\sqrt{x}+6}\in Z\Rightarrow\left(2\sqrt{x}+6\right)\inƯ\left(22\right)\)
Đến đây đã rất dễ dàng rồi nhé ^^
đề không cho tìm x NGUYÊN để m nguyên mà chỉ tìm các điểm x để m nguyên thôi
a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne-1\\x\ne1\end{cases}}\)
Ta có \(P=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)-1\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x-2\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)\(=\frac{x+\sqrt{x}+1}{x+1}.\frac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}-1\)
\(=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}-1=\frac{x+\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2}{\sqrt{x}-1}\)
b. Ta có \(P-\sqrt{x}=\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\frac{x+2-x+\sqrt{x}}{\sqrt{x}-1}=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)
Để \(P-\sqrt{x}\in Z\Rightarrow\sqrt{x}-1\inƯ\left(3\right)\Rightarrow\sqrt{x}-1\in\left\{-3;-1;1;3\right\}\)
\(\sqrt{x}-1\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(\sqrt{x}\) | -2 | 0 | 2 | 4 |
x | 0 | 4 | 16 | |
(l) | (n) | (n) | (n) |
Vậy \(x\in\left\{0;4;16\right\}\)thì \(P-\sqrt{x}\in Z\)
a) \(B=\frac{1}{\frac{1}{4}\sqrt{\frac{1}{4}}+27}=\frac{1}{\frac{1}{4}\cdot\frac{1}{2}+27}=\frac{1}{\frac{1}{8}+27}=\frac{1}{\frac{217}{8}}=\frac{8}{217}\)
b) \(A=\frac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{1}{2-\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}+3}\)
\(A=\frac{x-9+\sqrt{x}+3-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(A=\frac{x-6+\sqrt{x}-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{3\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}\)
c)) Với x \(\ge\)0 và x \(\ne\)4 (1)
Ta có: \(A>\frac{1}{2}\) <=> \(\frac{3}{\sqrt{x}+3}>\frac{1}{2}\)
<=> \(\sqrt{x}+3< 6\) <=> \(\sqrt{x}< 3\) <=> \(x< 9\) (2)
Từ (1) và (2) => \(0\le x< 9\)và x khác 4
d) Ta có : \(C=B:A=\frac{1}{x\sqrt{x}+27}:\frac{3}{\sqrt{x}+3}\)
\(C=\frac{1}{\left(\sqrt{x}+3\right)\left(x-3\sqrt{x}+9\right)}\cdot\frac{\sqrt{x}+3}{3}\)
\(C=\frac{1}{3\left(x-3\sqrt{x}+9\right)}=\frac{1}{3\left(x-3\sqrt{x}+\frac{9}{4}\right)+\frac{81}{4}}=\frac{1}{\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{81}{4}}\)
Do \(\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{81}{4}\ge\frac{81}{4}\) => \(C\le\frac{1}{\frac{81}{4}}=\frac{4}{81}\)
Dấu "=" xảy ra<=> \(\sqrt{x}-\frac{3}{4}=0\) <=> \(x=\frac{9}{16}\)
Vậy MaxC = 4/81 <=> x = 9/16
ta lần lượt nhân từng biểu thức liên hợp của: \(\left(x+\sqrt{x^2+2015}\right)và\left(y+\sqrt{y^2+2015}\right)\)
ta được hệ pt:
\(-\left(y+\sqrt{y^2+2015}\right)=x-\sqrt{x^2+2015}và-\left(x+\sqrt{x^2+2015}\right)=y-\sqrt{y^2+2015}\)
rồi giải ra
\(P=\frac{4\sqrt{x}-2+12}{2\sqrt{x}-1}=2+\frac{12}{2\sqrt{x}-1}\)
Để P nguyên thì \(\frac{12}{2\sqrt{x}-1}\inℤ\Leftrightarrow2\sqrt{x}-1\inƯ\left(12\right)\)bạn tự xét nhé:)
Với \(x\ge0;x\ne\frac{1}{4}\)
\(P=\frac{4\sqrt{x}+10}{2\sqrt{x}-1}=\frac{2\left(2\sqrt{x}-1\right)+12}{2\sqrt{x}-1}=2+\frac{12}{2\sqrt{x}-1}\)
\(\Rightarrow2\sqrt{x}-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Vậy với x = 0 ; 1 ; 4 thì P nhận giá trị nguyên