Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
a)\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
A xác định
\(\Leftrightarrow\hept{\begin{cases}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-3\\\left(x+3\right)\left(x-2\right)\ne0\\x\ne2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
Vậy A xác định \(\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
b) \(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{\left(x^2-2x\right)+\left(3x-6\right)}+\frac{1}{2-x}\)
\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{x.\left(x-2\right)+3.\left(x-2\right)}+\frac{1}{2-x}\)
\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}+\frac{1}{2-x}\)
\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(A=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{\left(x^2+3x\right)-\left(4x+12\right)}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{x.\left(x+3\right)-4.\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{x-4}{x-2}\left(x+3\ne0\right)\)
c) \(A=-\frac{3}{4}\)
\(\Leftrightarrow\frac{x-4}{x-2}=-\frac{3}{4}\)
\(\Leftrightarrow4.\left(x-4\right)=-3.\left(x-2\right)\)
\(\Leftrightarrow4x-16=-3x+6\)
\(\Leftrightarrow7x=22\)
\(\Leftrightarrow x=\frac{22}{7}\)
Vậy \(x=\frac{22}{7}\)
Tham khảo nhé~
để A xác định
\(\Rightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x^2\ne4\end{cases}}\Rightarrow x\ne\pm2\)
\(A=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{x^2-4}\)
\(A=\frac{4.x-8}{\left(x+2\right).\left(x-2\right)}+\frac{3.x+6}{\left(x-2\right).\left(x+2\right)}-\frac{5x-6}{\left(x-2\right).\left(x+2\right)}\)
\(A=\frac{4x-8+3x+6-5x+6}{\left(x+2\right).\left(x-2\right)}=\frac{2.\left(x+2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{2}{x-2}\)
\(\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{x^2-4}=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{4x-8}{\left(x+2\right)\left(x-2\right)}+\frac{3x+4}{\left(x-2\right)\left(x+2\right)}-\frac{5x-6}{\left(x-2\right)\left(x+2\right)}=\frac{4x-8+3x+4-5x+6}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{2x+2}{\left(x+2\right)\left(x-2\right)}=\frac{2x+2}{x^2-4}\)
C, \(x=4\Rightarrow A=\frac{2x+2}{x^2-4}=\frac{-6}{12}=\frac{-1}{2}\)
d, \(A\inℤ\Leftrightarrow2x+2⋮x^2-4\Leftrightarrow2x^2+2x-2x^2+8⋮x^2-4\Leftrightarrow2x+8⋮x^2-4\)
\(\Leftrightarrow2x^2+8x⋮x^2-4\Leftrightarrow16⋮x^2-4\)
\(x^2-4\inℕ\)
\(\Rightarrow x^2\in\left\{0;4;12\right\}\)
Thử lại thì 12 ko là số chính phương vậy x=0 hoặc x=2 thỏa mãn
mk học lớp 6 mong mn thông cảm nếu có sai sót
a: ĐKXĐ: x<>2; x<>-2
\(P=\dfrac{x^2+4+2x+4-x^2+2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{4}{x-2}\)
b: Để P=3 thì x-2=4/3
=>x=10/3
a) \(P=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)
a) \(ĐKXĐ:\) x khác + 3
\(b,P=\dfrac{3\left(x-3\right)+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{4}{x-3}\)
c) \(P=4=\dfrac{4}{x-3}=4=x-3=1=x=4\)
a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(P=\dfrac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{4}{x-3}\)
c: Để P=4 thì x-3=1
hay x=4
Lời giải:
a.
ĐKXĐ: $x\neq \pm 2$
b.
\(P=\left[\frac{4(x-2)}{(x+2)(x-2)}+\frac{3(x+2)}{(x+2)(x-2)}-\frac{5x+2}{(x-2)(x+2)}\right].\frac{x+2}{2}\)
\(=\frac{4(x-2)+3(x+2)-(5x+2)}{(x-2)(x+2)}.\frac{x+2}{2}=\frac{2(x-2)}{(x-2)(x+2)}.\frac{x+2}{2}=1\)