\(M=\frac{x^5-2x^4+2x^3-4x^2+3x+6}{x^2+2x-8}\)

a, Tìm tập xác định...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

a. DKXD : \(x^2+2x-8\ne0\Leftrightarrow x^2-2x+4x+8\ne0\Leftrightarrow\left(x-2\right)\left(x+4\right)\ne0\Leftrightarrow x\ne2;x\ne-4\)

8 tháng 12 2017

a) Giá trị của phân thức  M được xác định khi:

\(x^2+2x-8\ne0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-9\ne0\)

\(\Leftrightarrow\left(x+1\right)^2-9\ne0\)

\(\Leftrightarrow\left(x-2\right)\left(x+4\right)\ne0\)

\(\Rightarrow x-2\ne0\)và \(x+4\ne0\), do đó: \(x\ne2\)và \(x\ne4\)

Với: ĐK: \(x\ne2\)và \(x\ne-4\)thì giá trị của phân thức M được xác định.

P/s: Mình chỉ giải được phần a) thôi xin lỗi bạn nha!

6 tháng 12 2018

ĐẬP A CỦA MK LÀ

NẾU ĐÚNG HÃY TÍCH CHO MK MHA

a/ giá trị phân thức M được xác ding khi

x^2 + 2x - 8 khác 0  

< = > ( x^2 - 2x = 1 ) - 9 khác 0

< = >( x + 1 )^ 2 - 9 khác 0

< => ( x - 2 ) . ( x + 4 ) khac 0 

=> x - 2 khác 0 và x + 4 khác 0 => x khác 2 và x khác 4

ta có ding nghĩa x khác 2 và x khác 4 thì giá trị phân thức M được xác ding

CHÚC BẠN HC TỐT NHA 

xin lỗi ban nha mk chỉ giải đc phần a thôi

9 tháng 9 2018

x^2+2x-8 nha mn

9 tháng 9 2018

3x+6 hay 3x-6 vậy bạn?

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

25 tháng 2 2020

\(M+\frac{2x^2}{\left(3-x\right)\left(x+1\right)}=\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(3-x\right)\left(x+1\right)}-\frac{2x^2}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x\left(3-x\right)}{\left(3-x\right)\left(x-1\right)\text{​​}\left(x+1\right)}+\frac{4x\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}+\frac{2x^2\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{6x-2x^2+4x^2-4x+2x^3-2x^2}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x^3-2x}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x}{\left(3-x\right)\left(x+1\right)}\)

có gì sai sót bạn bỏ qua
Học tốt 

25 tháng 2 2020

b) Tìm điều kiện để M đc xác định
\(M=\frac{2x}{\left(3-x\right)\left(x+1\right)}\)
để M xác định thì 
3 - x
0  => x 3
x + 1
0 => x -1
Vậy x ≠ { 3 ; -1 } thì M đc xác định

 

17 tháng 2 2020

a) ĐKXĐ : \(x\ne0,x\ne\frac{3}{2},x\ne-\frac{3}{2}\)

Ta có : \(M=\frac{\left(2x^3+3x^2\right)\left(2x+1\right)}{4x^3-9x}\)

\(=\frac{x^2\left(2x+3\right)\left(2x+1\right)}{x\left(4x^2-9\right)}\)

\(=\frac{x^2\left(2x+3\right)\left(2x+1\right)}{x\left(2x+3\right)\left(2x-3\right)}\)

\(=\frac{x\left(2x+1\right)}{2x-3}\)

Vậy : \(M=\frac{x\left(2x+1\right)}{2x-3}\) với \(x\ne0,x\ne\frac{3}{2},x\ne-\frac{3}{2}\)

b) Để \(M=0\Leftrightarrow\frac{x\left(2x+1\right)}{2x-3}=0\)

\(\Rightarrow x\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(loại\right)\\x=-\frac{1}{2}\left(tm\right)\end{cases}}\)

Vậy : \(x=-\frac{1}{2}\) để M=0.

17 tháng 2 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm\frac{3}{2}\end{cases}}\)

a) \(M=\frac{\left(2x^3+3x^2\right)\left(2x+1\right)}{4x^3-9x}\)

\(\Leftrightarrow M=\frac{x^2\left(2x+3\right)\left(2x+1\right)}{x\left(4x^2-9\right)}\)

\(\Leftrightarrow M=\frac{x\left(2x+3\right)\left(2x+1\right)}{\left(2x+3\right)\left(2x-3\right)}\)

\(\Leftrightarrow M=\frac{x\left(2x+1\right)}{2x-3}\)

b) Để M =0

\(\Leftrightarrow\frac{x\left(2x+1\right)}{2x-3}=0\)

\(\Leftrightarrow x\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(KTM\right)\\x=\frac{-1}{2}\left(TM\right)\end{cases}}}\)

Vậy ..........

c) Ta có :

\(M=\frac{x\left(2x+1\right)}{2x-3}=x+2+\frac{6}{2x-3}\)

Để M có giá trị nguyên

\(\Leftrightarrow2x-3\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)( Không lấy âm vì n thuộc N )

Ta có bảng sau :

2x-31236
x25/2(L)39/2(L)

Vậy..........