\(M=\frac{x-3}{x+2}\)

Tìm x để  \(M< 1\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

M<1 => \(\frac{x-3}{x+2}\)<1

       <=> \(\frac{x-3}{x+2}\)- 1 < 0

       <=> \(\frac{x-3}{x+2}\)-\(\frac{x+2}{x+2}\)< 0

       <=> \(\frac{x-3-x-2}{x+2}\)< 0

       <=>              -5         < 0

=> Vô nghiệm

5 tháng 8 2018

a)\(A=12-\left|x-3\right|-\left|y+7\right|\)

\(-\left|x-3\right|\le0;-\left|y+7\right|\le0\)

\(\Rightarrow A\le12-0-0=12\)

Vậy Max A = 12 <=> x = 3 ; y = -7

b)\(B=-\left(x-2018\right)^6-1\)

\(-\left(x-2018\right)^6\le0\)

\(B\le0-1=-1\)

Vậy Max B = -1 <=> x = 2018

5 tháng 8 2018

a)  \(A=12-\left|x-3\right|-\left|y+7\right|\)

Nhận thấy: \(\left|x-3\right|\ge0;\)\(\left|y+7\right|\ge0\)

suy ra:  \(A=12-\left|x-3\right|-\left|y+7\right|\le12\)

Vậy MIN A = 12

Dấu "=" xảy ra <=> \(x=3;y=-7\)

b) \(B=-\left(x-2018\right)^6-1\)

Nhận thấy:  \(\left(x-2018\right)^6\ge0\)

suy ra:  \(B=-\left(x-2018\right)^2-1\le-1\)

Vậy MIN B = -1

Dấu "=" xảy ra  <=>   \(x=2018\)

c) \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\)

Nhận thấy:  \(\left|x+8\right|\ge0\)    \(\left(3y+7\right)^{2016}\ge0\)

suy ra:  \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\le\frac{20}{7}\)

Vậy MIN  C = 20/7

Dấu "=" xảy ra <=>  \(x=-8;y=-\frac{7}{3}\)

2 tháng 9 2018

\(a,\left|3x-1\right|=\left|5-2x\right|\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=5-2x\\3x-1=2x-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=6\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{6}{5}\\x=-4\end{cases}}\)

b,\(\left|2x-1\right|+x=2\)

\(\Leftrightarrow\left|2x-1\right|=2-x\)

Điều kiện \(2-x\ge0\Leftrightarrow x\le2\)

\(\Rightarrow\orbr{\begin{cases}2x-1=2-x\\2x-1=x-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=3\\x=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\left(\text{nhận}\right)\\x=-1\left(\text{nhận}\right)\end{cases}}}\)

2 tháng 9 2018

c.\(A=0,75-\left|x-3,2\right|\)

Vì \(\left|x-3,2\right|\ge0\Rightarrow0,75-\left|x-3,2\right|\le0,75\)

Dấu "=' xảy ra \(\Leftrightarrow x-3,2=0\Leftrightarrow x=3,2\)

Vậy Max A = 0,75 khi x = 3,2

\(d,B=2.\left|x+1,5\right|-3,2\)

Vì 2. |x + 1,5| ≥ 0 => B ≥ -3,2

Dấu " = ' xảy ra khi \(2\left|x+1,5\right|=0\)

\(\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\)

Vậy Min B = -3,2 khi x = -1,5

11 tháng 12 2017

a) Để biểu thức đạt giá trị nguyên thì :

   \(4⋮x+1\)

\(\Rightarrow x+1\in\left\{1;-1;4;-4\right\}\)

Lập bảng :

   

\(x+1\)\(1\)\(-1\)\(4\)\(-4\)
\(x\)\(0\)\(-2\)\(3\)\(-5\)

Vậy \(x\in\left\{0;-2;3;-5\right\}\)

10 tháng 12 2017

Để P nguyên <=> \(\sqrt{x}-1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

Ta có bảng:

\(\sqrt{x}-1\)1-17-7
\(\sqrt{x}\)208-6
x4064loại

Vậy x thuộc {4;0;64}

10 tháng 10 2018

\(3^{2x+4}:3^{x+1}=81\)

\(3^{2x+4-x-1}=3^4\)

\(3^{x+3}=3^4\)

\(\Rightarrow x+3=4\)

\(\Rightarrow x=1\)

10 tháng 10 2018

\(3^{2x+4}:3^{x+2}=81\)

\(\Rightarrow3^{2x+4-x-2}=3^4\)

\(\Rightarrow3^{x+2}=3^4\)

\(\Rightarrow x+2=4\)

\(\Rightarrow x=4-2=2\)

1 tháng 1 2018

Ta có :

\(C=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=\left(\frac{2}{2!}+\frac{3}{3!}+\frac{4}{4!}+...+\frac{n}{n!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\right)\)

\(=\left(1+\frac{1}{2!}+\frac{1}{3!}+....+\frac{1}{\left(n-1\right)!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+....+\frac{1}{n!}\right)\)

\(=1+\frac{1}{2!}+\frac{1}{3!}+....+\frac{1}{\left(n-1\right)!}-\frac{1}{2!}-\frac{1}{3!}-\frac{1}{4!}-....-\frac{1}{n!}\)

\(=1-\frac{1}{n!}=\frac{n!-1}{n!}\)