Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(M=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b.
\(M< \frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}< \frac{1}{2}\\ \Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{1}{2}< 0\\ \Leftrightarrow\frac{2\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}+1\right)}< 0\\ \Leftrightarrow\frac{\sqrt{x}-3}{2\left(\sqrt{x}+1\right)}< 0\\ \Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)
Vậy với \(0\le x< 9;x\ne1\) thì ..........
\(A-B=\frac{2\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{1-\sqrt{x}}+\frac{3\sqrt{x}-1}{x-1}\)
\(\Leftrightarrow M=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{x-1}+\frac{\left(\sqrt{x}+1\right)^2}{x-1}+\frac{3\sqrt{x}-1}{x-1}\)
\(\Leftrightarrow M=\frac{2x-2\sqrt{x}+x+2\sqrt{x}+1+3\sqrt{x}-1}{x-1}=\frac{3x+3\sqrt{x}}{x-1}=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{3\sqrt{x}}{\sqrt{x}-1}\)
Để \(M< 4\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}-1}< 4\)
Nếu x>=1
\(\Rightarrow3\sqrt{x}\le4\sqrt{x}-4\)
\(\Leftrightarrow4\le\sqrt{x}\)
\(\Leftrightarrow x\le16\)
Nếu x<1
\(\Rightarrow3\sqrt{x}>4\sqrt{x}-4\)
\(\Leftrightarrow4>\sqrt{x}\)
\(\Rightarrow16>x\)
Ko có x thỏa mãn
1: Ta có: \(Q=\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(=\left(\frac{\left(2\sqrt{x}+x\right)\left(\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}-\frac{x\sqrt{x}-1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(=\frac{x-2\sqrt{x}+x\sqrt{x}-x\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}:\frac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)
\(=\frac{x-2\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}:\frac{x-1}{x+\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}\cdot\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
2: Ta có: \(\frac{1}{Q}=4\sqrt{x}-4\)
\(\Leftrightarrow Q=\frac{1}{4\sqrt{x}-4}\)
\(\Leftrightarrow\frac{x+\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{4\sqrt{x}-4}\)
\(\Leftrightarrow\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=\left(x+\sqrt{x}+1\right)\left(4\sqrt{x}-4\right)\)
\(\Leftrightarrow x+x\sqrt{x}-\sqrt{x}-1=4x\sqrt{x}-4\)
\(\Leftrightarrow x+x\sqrt{x}-\sqrt{x}-1-4x\sqrt{x}+4=0\)
\(\Leftrightarrow x-3x\sqrt{x}-\sqrt{x}+3=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-3\left(x\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left[\sqrt{x}-3\left(x+\sqrt{x}+1\right)\right]=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-3x-3\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(-3x-2\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)=0\)(vì \(-3x-2\sqrt{x}-3\ne0\forall x\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow\sqrt{x}=1\)
hay x=1(không thỏa mãn ĐKXĐ)
Vậy: Không có giá trị nào của x thỏa mãn \(\frac{1}{Q}=4\sqrt{x}-4\)
a, Với \(x\ge0;x\ne1\)
\(Q=\left(\frac{x-1}{\sqrt{x}-1}-\frac{x\sqrt{x}-1}{x-1}\right):\left(\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1-\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x-1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1-\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
a, x = \(\frac{4\left(\sqrt{3}+1\right)}{3-1}-\frac{4\left(\sqrt{3}-1\right)}{3-1}\)
x = \(\left(2\sqrt{3}+2\right)-\left(2\sqrt{3}-2\right)\)
x = \(2\sqrt{3}+2-2\sqrt{3}+2\)
x = 4 (TMĐK)
=> A = \(\frac{2\sqrt{4}+1}{3\sqrt{4}+1}\)
=> A = \(\frac{5}{7}\)
Vậy x = \(\frac{4}{\sqrt{3}-1}-\frac{4}{\sqrt{3}+1}\) thì A = \(\frac{5}{7}\)
b, B = \(\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
B = \(\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{1}{\sqrt{x}-1}\)
B = \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
c, \(\frac{B}{A}>2\) <=> \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}:\frac{2\sqrt{x}+1}{3\sqrt{x}+1}\) > 2
<=> \(\frac{3\sqrt{x}+1}{\sqrt{x}+1}>2\)
<=> \(\frac{3\sqrt{x}+1}{\sqrt{x}+1}-2>0\)
<=> \(\frac{3\sqrt{x}+1-2\sqrt{x}-2}{\sqrt{x}+1}>0\)
<=> \(\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)
mà \(\sqrt{x}+1>0\) \(\forall\) \(x\in\) ĐKXĐ
=> \(\sqrt{x}-1>0\)
<=> \(\sqrt{x}>1\)
<=> \(x>1\)
Kết hợp ĐKXĐ : x \(\ge0\) ; x \(\ne\) 1
=> x > 1 thì \(\frac{B}{A}>2\)
a) \(Q=\left(\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}}{1+\sqrt{x}}\right)+\frac{3-\sqrt{x}}{x-1}\left(x\ge0;x\ne1\right)\)
\(=-\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-x-\sqrt{x}+x-\sqrt{x}+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\frac{3}{\sqrt{x}+1}\)
b) Để \(Q=-1\)
\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow\sqrt{x}+1=3\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
Ta có
\(1P=\left(\frac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\frac{x\sqrt{x}-1}{\sqrt{x}+1}-\sqrt{x}\right)\)
\(=\frac{1}{\sqrt{x}-1}.\frac{x\sqrt{X}-x-\sqrt{x}-1}{\sqrt{x}+1}\)
\(=1\frac{x\sqrt{x}-x-\sqrt{x}-1}{x-1}\)
Ta có thao câu b thì 1 - x > 0
<=> x < 1
=> \(0\le x< 1\)
Ta có \(P\sqrt{1-x}=\frac{x\sqrt{x}-x-\sqrt{x}-1}{-\sqrt{1-x}}< 0\)
\(\Leftrightarrow x\sqrt{x}-x-\sqrt{x}-1>0\)
Ta thấy \(0\le x< 1\Rightarrow x\sqrt{x}< x+\sqrt{x}+1\)
Vậy không có giá trị nào của x để cái trên xảy ra
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\ne1\end{cases}\Rightarrow}\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}}\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}.\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\frac{3\left(\sqrt{x}-1\right)}{x-1}-\frac{6\sqrt{x}-4}{x-1}\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(b,M< \frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}< \frac{1}{2}\)
\(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{1}{2}< 0\)\(\Rightarrow\frac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{2\left(\sqrt{x}+1\right)}< 0\)
\(\Rightarrow\frac{2\sqrt{x}-1-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)\(\Rightarrow\frac{\sqrt{x}-2}{2\left(\sqrt{x}+1\right)}< 0\)
Vì \(2\left(\sqrt{x}+1\right)>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\)
\(\Rightarrow\sqrt{x}>\sqrt{4}\Leftrightarrow x>4\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\left(x\ge0;x\ne1\right)\)
\(M=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{x-1}\)
\(M=\frac{x+\sqrt{x}+3\sqrt{x}-3}{\left(\sqrt{x}\right)^2-1^2}-\frac{6\sqrt{x}-4}{x-1}\)
\(M=\frac{x-2\sqrt{x}+1}{x-1}\)
\(M=\frac{\left(\sqrt{x}-1\right)^2}{x-1}\)