Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:x\ne\pm2\)
\(P=\left[\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\right]:\left[\frac{1}{x-2}-\frac{4x}{x^3-2x^2+4x-8}\right]\)
\(\Leftrightarrow P=\left(\frac{x}{x^2+4}+\frac{2}{x^2+4}\right):\left(\frac{1}{x-2}-\frac{4x}{\left(x-2\right)\left(x^2+4\right)}\right)\)
\(\Leftrightarrow P=\frac{x+2}{x^2+4}:\frac{x^2+4-4x}{\left(x-2\right)\left(x^2+4\right)}\)
\(\Leftrightarrow P=\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)
\(\Leftrightarrow P=\frac{x+2}{x-2}\)
b) P là số nguyên tố khi và chỉ khi \(x+2⋮x-2\)
\(\Leftrightarrow4⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow x\in\left\{1;3;0;4;-2;6\right\}\)
Loại \(x=-2\)
\(\Leftrightarrow P\in\left\{-3;5;-1;3;2\right\}\)
Vì P là số nguyên tố nên
\(P\in\left\{5;3;2\right\}\)
Vậy để P là số nguyên tố thì \(x\in\left\{3;4;6\right\}\)
Gợi ý thôi nhé
a: x^2 - 5x + 8 = x^2 - 3x - 2x + 6 + 2 = (x-3).(x-2) + 2
=> Phân thức sẽ nguyên khi 2/(x-3) nguyên (Do x-3 nguyên bởi x nguyên)
<=> x-3 thuộc Ư(2) do x nguyên
Các câu khác thì cứ làm sao cho nó thành đa thức như thế
a) thay x = -3 vào biểu thức, ta có:
\(A=\frac{\left(-3\right)^2+2.\left(-3\right)}{\left(-3\right)+1}=-\frac{3}{2}\)
b) M = A.B
\(M=\left(-\frac{3}{2}\right)\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)\)
\(M=-\frac{3\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)}{2}\)
\(M=-\frac{3.\frac{8}{x+2}}{2}\)
\(M=-\frac{\frac{24}{x+2}}{2}\)
\(M=-\frac{24}{2\left(x+2\right)}\)
\(M=-\frac{12}{x+2}\)
Mình lười nghĩ nên chúng ta dùng tool :)))
\(\frac{2x^2}{8+2x-x^2}+\frac{x+4}{x-2}-\frac{x+2}{4-x}\)
\(=\frac{4x^3-20x^2-8x+96}{x^4-4x^3-12x^2+32x+64}\)
\(=\frac{4\left(x+3\right)\left(x-3\right)\left(x-4\right)}{\left(x+2\right)\left(x+2\right)\left(x-4\right)\left(x-4\right)}\)
\(=\frac{4\left(x-3\right)}{\left(x+2\right)\left(x-4\right)}\)