\(\dfrac{2\sqrt{x}-21}{x-9\sqrt{x}+20}-\dfrac{\sqrt{x}+5}{\sqrt{x}-4}+\dfrac{2\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2022

a: \(M=\dfrac{2\sqrt{x}-21-x+25+2x-8\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-4\right)}\)

\(=\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-4}\)

Khi x=3-2 căn 2 thì \(M=\dfrac{\sqrt{2}-1}{\sqrt{2}-1-4}=\dfrac{\sqrt{2}-1}{\sqrt{2}-5}=\dfrac{3-4\sqrt{2}}{23}\)

b: Để M là số nguyên thì \(\sqrt{x}-4+4⋮\sqrt{x}-4\)

=>\(\sqrt{x}-4\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{9;36;4;64;0\right\}\)

Câu 1.Cho biểu thức \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\), \(N=\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) với \(x\ge0,x\ne4,x\ne9.\)1) Tính giá trị của biểu thức N khi x = 16,2) Rút gọn biểu thức M.3) Tìm tất cả các số tự nhiên x để M < N.Câu 2.Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:Hai người đi xe đạp xuất phát cùng một lúc đi từ A đến B. Vận tốc của họ...
Đọc tiếp

undefined

Câu 1.

Cho biểu thức \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)\(N=\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) với \(x\ge0,x\ne4,x\ne9.\)

1) Tính giá trị của biểu thức N khi x = 16,

2) Rút gọn biểu thức M.

3) Tìm tất cả các số tự nhiên x để M < N.

Câu 2.

Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:

Hai người đi xe đạp xuất phát cùng một lúc đi từ A đến B. Vận tốc của họ hơn kém nhau 4 km/h nên đến B sớm muộn hơn nhau 45 phút. Tính vận tốc của mỗi người, biết quãng đường AB dài 36 km.

Câu 3.

1) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x+1}{x}+\dfrac{2y+1}{y}=5\\\dfrac{3x+2}{x}+\dfrac{3y+1}{y}=9\end{matrix}\right.\)

2) Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: y = x + m và parabol (P): y = x2.

a) Tìm các tọa độ giao điểm của d và (P) khi m = 6.

b) Tìm m sao cho d cắt (P) tại hai điểm phân biệt có hoành độ dương.

Câu 4.

Cho tam giác ABC vuông tại A và AB < AC. Gọi H là hình chiếu vuông góc của A trên BC và M là điểm đối xứng của H qua AB.

1) Chứng minh tứ giác AMBH nội tiếp.

2) P là giao điểm thứ hai của đường thẳng CM với đường tròn ngoại tiếp tứ giác AMBH. Chứng minh CP.CM = CA2.

3) Gọi E, N lần lượt là giao điểm thứ hai của AB, HP với đường tròn ngoại tiếp tam giác APC. Chứng minh rằng EN song song với BC.

Câu 5.

Giải phương trình: \(\sqrt{x-3}+x^2-6x+7=0\)

7

Câu 2: 

2) Ta có: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)

16 tháng 4 2021

Câu 2 : 

Gọi : vận tốc của người đi chậm là : x (km/h) ( x > 0 ) 

Vận tốc của người đi nhanh : x + 4 (km/h) 

Vi : người đi chậm đến muộn hơn : 45 phút \(=\dfrac{3}{4}\left(h\right)\)

Khi đó : 

\(\dfrac{36}{x}-\dfrac{36}{x+4}=\dfrac{3}{4}\)

\(\Leftrightarrow\left[36\cdot\left(x+4\right)-36x\right]\cdot4=3x\cdot\left(x+4\right)\)

\(\Leftrightarrow3x^2+12x-144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=12\left(n\right)\\x=16\left(l\right)\end{matrix}\right.\)

 

 

27 tháng 9 2023

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\left(x\ge0;x\ne25\right)\)

Để \(A=\dfrac{2\sqrt{x}}{3}\) thì:

\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{2\sqrt{x}}{3}\)

\(\Leftrightarrow3\sqrt{x}-15=2x+10\sqrt{x}\)

\(\Leftrightarrow2x+10\sqrt{x}-3\sqrt{x}+15=0\)

\(\Leftrightarrow2x+7\sqrt{x}+15=0\) 

Mà \(2x+7\sqrt{x}+15>0\) (vì \(x\ge0\))

nên không tìm được giá trị nào của \(x\) thoả mãn \(A=\dfrac{2\sqrt{x}}{3}\)

#\(Toru\)

a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:

\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)

c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)

hay \(x\in\left\{16;25;64\right\}\)

19 tháng 3 2021

a/ \(P=12\)

b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )

19 tháng 3 2021

a. Thay x = 3 vào biểu thức P ta được :

\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)

b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

c, Ta có :

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)

Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)

19 tháng 11 2023

2: \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5-10}{\sqrt{x}+5}\)

\(=1-\dfrac{10}{\sqrt{x}+5}\)

\(\sqrt{x}+5>=5\forall x\)

=>\(\dfrac{10}{\sqrt{x}+5}< =\dfrac{10}{5}=2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}>=-2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}+1>=-2+1=-1\forall x\)

Dấu '=' xảy ra khi x=0

Vậy: \(A_{min}=-1\) khi x=0