Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9
Ta có: \(P=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\left(\sqrt{x}+1\right)}{x-5\sqrt{x}+6}\)
\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{x-4-x+2\sqrt{x}+3-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{-4+2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{2}{\sqrt{x}-3}\)
b) Ta có: P < -1 <=> \(\frac{2}{\sqrt{x}-3}< -1\) <=> \(\frac{2}{\sqrt{x}-3}+1< 0\)
<=> \(\frac{2+\sqrt{x}-3}{\sqrt{x}-3}< 0\) <=> \(\frac{\sqrt{x}-1}{\sqrt{x}-3}< 0\)
TH1: \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-3>0\end{cases}}\) <=> \(\hept{\begin{cases}x< 1\\x>9\end{cases}}\)(loại)
TH2: \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}-3< 0\end{cases}}\) <=> \(\hept{\begin{cases}x>1\\x< 9\end{cases}}\)
Kết hợp vs đk => S = {x|1 < x < 9 và x \(\ne\)4}
c) Để P nguyên <=> 2 \(⋮\)\(\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Lập bảng: tự làm
@Edogawa Conan phân số thứ 2 bạn bị sai rồi \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)=x+2\sqrt{x}-3\)
trước phân số là dấu "-" phải đổi dấu
a) Ta có:
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-4}{\sqrt{x}-2\sqrt{x}}\)
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{\sqrt{x}-4}{\sqrt{x}}\)
\(A=\frac{\left(\sqrt{x}-3\right)\sqrt{x}+\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(A=\frac{x-3\sqrt{x}+x-6\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(A=\frac{2x-9\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(ĐKXĐ:m\ge0;m\ne1\)
\(a,M=\frac{\sqrt{m}-1}{\sqrt{m}+1}+\frac{\sqrt{m}+1}{\sqrt{m}-1}\)
\(=\frac{\left(\sqrt{m}-1\right)^2+\left(\sqrt{m}+1\right)^2}{\left(\sqrt{m}+1\right)\left(\sqrt{m}-1\right)}\)
\(=\frac{m-2\sqrt{m}+1+m+2\sqrt{m}+1}{m-1}\)
\(=\frac{2m+2}{m-1}\)
b,Để M nguyên thì \(\frac{2m+2}{m-1}=\frac{2\left(m-1\right)}{m-1}+\frac{4}{m-1}=2+\frac{4}{m-1}\) nguyên
\(\Rightarrow m-1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow m=\left\{2;3;5;0;-1;-3\right\}\)
\(KethopDKXD:m=\left\{2;3;5;0\right\}\)
Câu a bạn tự làm nha!. Câu b : A=\(\frac{2x}{x-1}\)=\(\frac{2x-2}{x-1}\)-\(\frac{2}{x-1}\)=\(\frac{2.\left(x-1\right)}{x-1}\)-\(\frac{2}{x-1}\)=2-\(\frac{2}{x-1}\). Để A nguyên thì x-1 là ước của 2. Đến đó dễ rồi bạn tự làm nha. Học tốt!