\(\frac{1}{5}\)+ \(\left(\frac{1}{5}\right)^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2016

\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)

\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\)

\(5M=5\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\right)\)

\(5M=1+\frac{1}{5}+...+\frac{1}{5^{49}}\)

\(5M-M=\left(1+\frac{1}{5}+...+\frac{1}{5^{49}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\right)\)

\(4M=1-\frac{1}{5^{50}}\)

\(M=\frac{1-\frac{1}{5^{50}}}{4}< \frac{1}{4}=0,25\)

Đpcm

22 tháng 10 2016

Cảm ơn, cảm ơn rất nhiều!!!

11 tháng 12 2017

\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{49}+\left(\frac{1}{5}\right)^{50}\)

\(5M=1+\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{48}+\left(\frac{1}{5}\right)^{49}\)

5M - M = \(1-\left(\frac{1}{5}\right)^{50}\)hay 4M = \(1-\left(\frac{1}{5}\right)^{50}\)< 1

\(\Rightarrow M=\frac{1-\left(\frac{1}{5}\right)^{50}}{4}< \frac{1}{4}\)

7 tháng 7 2018

\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)(1)

\(\Rightarrow5M=1+\frac{1}{5}+...+\left(\frac{1}{5}\right)^{49}\)(2)

Lấy (2)-(1) ta có

\(\Rightarrow4M=1-\left(\frac{1}{5}\right)^{50}\)

\(\Rightarrow M=\frac{1-\frac{1}{5^{50}}}{4}\)

Do \(1-\frac{1}{5^{50}}< 1\)

\(\Rightarrow M< \frac{1}{4}\)

25 tháng 7 2017

\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)

\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)

\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)

\(=3-\left(-1\right)\)

\(=4\)

b)   \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)

       \(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)

     \(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)

      \(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)

    \(=\frac{199}{16}:\left(12-2\right)\)

\(=\frac{199}{16}:10\)

\(=\frac{199}{160}\)

c)   \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)

\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)

\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)

\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)

\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)

     

25 tháng 7 2017

giờ mk phải đi ngủ r mai mk làm cho 

14 tháng 2 2020

Tui làm được câu 4

20 tháng 9 2016

a ) \(\left(\frac{1}{3}\right)^m=\left(\frac{1}{3}\right)^4\)

\(\Rightarrow m=4\)

b ) \(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\)

       \(\Leftrightarrow\left(\frac{3}{5}^2\right)^n=\left(\frac{9}{25}\right)^5\)

       \(\Leftrightarrow\left(\frac{9}{25}\right)^n=\left(\frac{9}{25}\right)^5\)

       \(\Leftrightarrow n=5\)

c ) \(\left(-0,25\right)^p=\frac{1}{256}\)

   \(\Leftrightarrow\left(-\frac{1}{4}\right)^p=\frac{1}{256}\)

   \(\Leftrightarrow\left(-\frac{1}{4}\right)^p=\left(-\frac{1}{4}\right)^4\)

   \(\Leftrightarrow p=4\)

25 tháng 9 2016

 

\(a.\)

\(\left(\frac{1}{3}\right)^m=\frac{1}{81}\)

\(\Rightarrow\left(\frac{1}{3}\right)^m=\left(\frac{1}{3}\right)^4\)

\(\Rightarrow m=4\)

Vậy :        \(m=4\)

\(b.\)

\(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\)

\(\Rightarrow\left(\frac{3}{5}\right)^n=\left(\frac{3}{5}\right)^{15}\)

\(\Rightarrow n=5\)

Vậy :        \(n=5\)

\(c.\)

\(\left(-0,25\right)^p=\frac{1}{256}\)

\(\Rightarrow\left(-\frac{1}{4}\right)^p=\frac{1}{256}\)

\(\Rightarrow\left(-\frac{1}{4}\right)^p=\left(\frac{1}{4}\right)^4\)

\(\Rightarrow p=4\)

Vậy :        \(p=4\)

 

13 tháng 9 2015

Ta có : \(2M=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)

nên \(2M-M=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)

\(\Leftrightarrow M=1-\frac{1}{2^{99}}<1\)

d: \(D=-8\cdot\left(\dfrac{3}{4}-\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)

\(=-8\cdot\dfrac{1}{2}:\dfrac{27-14}{12}\)

\(=-4:\dfrac{13}{12}\)

\(=-4\cdot\dfrac{12}{13}=-\dfrac{48}{13}\)

e: \(E=5\cdot4-4\cdot3+5-0.3\cdot20\)

=20-12+5-6

=8+5-6

=13-6=7

f: \(F=\dfrac{9}{4}+\dfrac{5}{6}-\dfrac{3}{2}:6\)

\(=\dfrac{9}{4}+\dfrac{5}{6}-\dfrac{3}{12}\)

\(=\dfrac{27}{12}+\dfrac{10}{12}-\dfrac{3}{12}=\dfrac{34}{12}=\dfrac{17}{6}\)