Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a) \(\left(\dfrac{2\sqrt{2}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\dfrac{2\sqrt{2}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\dfrac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)
\(=\dfrac{2\sqrt{2}\cdot\left(\sqrt{x}-3\right)+\sqrt{x}\cdot\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x-3}}\)
\(=\dfrac{2\sqrt{2x}-6\sqrt{2}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{x+\sqrt{x}+3\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{x+4\sqrt{x}+3}\)
bài 2 : đk : \(x\ge0;x\ne1\)
a) P = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
P = \(\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
P = \(\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) P = \(\dfrac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
P = \(\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
P = \(\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b) P = \(\dfrac{1}{2}\) \(\Leftrightarrow\) \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{1}{2}\) \(\Leftrightarrow\) \(\sqrt{x}+3=4-10\sqrt{x}\)
\(\Leftrightarrow\) \(11\sqrt{x}-1=0\) \(\Leftrightarrow\) \(11\sqrt{x}=1\) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{1}{11}\) \(x=\left(\dfrac{1}{11}\right)^2=\dfrac{1}{121}\)
\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)
\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)
KL............
\(2.\) Tương tự bài 1.
\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)
Bài 1:
a: \(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{x-9}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{x-9}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
b: Để A=3/4 thì căn x+2=3
=>x=1
c: Khi x=4 thì \(A=\dfrac{2+2}{2+3}=\dfrac{4}{5}\)
a: ĐKXĐ: x>=0; x<>9
\(B=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{x-9}\)
\(=\dfrac{3x+9\sqrt{x}}{x-9}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
b: Thay \(x=11+6\sqrt{2}\) vào B, ta được:
\(B=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}\)
\(=\dfrac{9+3\sqrt{2}}{\sqrt{2}}\)
c: Để B<1 thì B-1<0
\(\Leftrightarrow\dfrac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
=>căn x-3<0
=>0<=x<9
Bài 2:
a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b: Thay \(x=5-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{-5\left(\sqrt{3}-\sqrt{2}\right)+2}{\sqrt{3}-\sqrt{2}+3}=\dfrac{-5\sqrt{3}+5\sqrt{2}+2}{\sqrt{3}-\sqrt{2}+3}\simeq0,124\)
d: Để A=1/2 thì \(\sqrt{x}+3=-10\sqrt{x}+4\)
\(\Leftrightarrow11\sqrt{x}=1\)
hay x=1/121
Câu 1:
a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b: Để P<1 thì \(\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)
\(\Leftrightarrow\sqrt{a}-2< 0\)
hay 0<a<4
a) Rut gon H
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}-\dfrac{1}{\sqrt{a}-2}\)
DKXD : \(\left\{{}\begin{matrix}\sqrt{a}+3\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ne9\\a\ne4\end{matrix}\right.\)
Ta co : \(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{a-\sqrt{a}-6}{a+\sqrt{a}-6}\)
Bài 2:
a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}\)
b: Để A=1/2 thì \(\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\)
\(\Leftrightarrow-10\sqrt{x}+2=\sqrt{x}+3\)
hay \(x\in\varnothing\)
a ,rút gọn P (dkxd x\(\ge0,x\ne0\)
P=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
=\(\dfrac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}\)+\(\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
=\(\dfrac{15\sqrt{x}-11}{\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x-1}\right)}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
=\(\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
=\(\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\dfrac{7\sqrt{x}-5x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\dfrac{-\left(5x-7\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
..............=\(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)
a: ĐKXĐ: x>=0; x<>1
b: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+5\sqrt{x}-8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
c: Để K=1/2 thì \(\dfrac{-5x+5\sqrt{x}-8}{x+2\sqrt{x}-3}=\dfrac{1}{2}\)
=>\(-10x+10\sqrt{x}-16-x-2\sqrt{x}+3=0\)
=>\(-11x+8\sqrt{x}-13=0\)
hay \(x\in\varnothing\)
a: \(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{x-9}\)
\(=\dfrac{3x+9\sqrt{x}}{x-9}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
b: Khi x=11+6 căn 2 thì \(M=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}=\dfrac{9+3\sqrt{2}}{\sqrt{2}}=\dfrac{9\sqrt{2}+6}{2}\)
c: M<1
=>\(\dfrac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
=>căn x-3<0
=>0<x<9
`a,` \(M=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{9-x}\) \(\left(x\ne\pm3;x>0\right)\)
\(M=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3+11\sqrt{x}}{x-9}\)
\(M=\dfrac{2x-6\sqrt{x}}{x-9}+\dfrac{x+3\sqrt{x}+\sqrt{x}+3}{x-9}-\dfrac{3+11\sqrt{x}}{x-9}\)
\(M=\dfrac{3x+9\sqrt{x}}{x-9}\)
\(M=\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)
\(M=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
`b,`Ta có :
\(M=\dfrac{3\sqrt{11+6\sqrt{2}}}{\sqrt{11+6\sqrt{2}}-3}\)
\(M=\dfrac{3\sqrt{\left(3+\sqrt{2}\right)^2}}{\sqrt{\left(3+\sqrt{2}\right)^2}-3}\)
\(M=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}\)
\(M=\dfrac{9+3\sqrt{2}}{\sqrt{2}}\)
\(M=\dfrac{6+9\sqrt{2}}{2}\)
`c,` Để `M<1` Ta có :
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}< 1\)
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}-1< 0\)
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}< 0\)
\(\dfrac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\sqrt{x}-3< 0\) ( vì \(2\sqrt{x}+3>0\) )
\(\sqrt{x}< 3\)
\(x< 9\)
Đối chiếu ĐKXĐ ta có : `0<x<9`