K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

a)\(M=5+5^2+5^3+5^4+...+5^{79}+5^{80}\)(có 80 số hạng)

\(M=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)(có 40 nhóm)

\(M=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)

\(M=5\cdot6+5^3\cdot6+...+5^{79}\cdot6\)

\(M=6\left(5+5^3+...+5^{79}\right)⋮6\)

30 tháng 9 2015
 
 

 



a) Theo đề bài ra, ta có : ab¯¯¯+ba¯¯¯=(10a+b)+(10b+a)=11a+11b=11(a+b)� ��11

b) Theo đề bài ra ta có : ab¯¯¯−ba¯¯¯=(10a+b)−(10b+a)=10a+b−10b� ��a=9a−9b=9(a−b)⋮9

1 tháng 9 2016

a) M = 5 + 52 + 53 + ... + 580 (có 80 số hạng; 80 chia hết cho 2)

M = (5 + 52) + (5+ 54) + ... + (579 + 580)

M = 5.(1 + 5) + 53.(1 + 5) + ... + 579.(1 + 5)

M = 5.6 + 53.6 + ... + 579.6

M = 6.(5 + 53 + ... + 579) chia hết cho 6

Chứng tỏ M chia hết cho 6

b) Ta thấy các lũy thừa của 5 từ 52 trở đi đều chia hết cho 5 và 25

=> 52; 53; ...; 580 đều chia hết cho 5 và 25

Mà 5 chia hết cho 5 nhưng không chia hết cho 25

=> M chia hết cho 25 nhưng không chia hết cho 25, không phải số chính phương

Chứng tỏ M không phải số chính phương

1 tháng 9 2016

a. Ta có: M = 5 + 52 + 53 + ...+ 580

= 5 + 52 + 5+ ... + 580 = (5 + 52) + (53 + 54) + (55 + 56) + ... + (579 + 580)

= (5 + 52) + 52 . (5 + 52) + ... + 578(5 + 52)

= 30 + 30 . 52 + 30 . 54 + ... + 30 . 578 = 30(1 + 52 + 54 + ... + 578)  chia hết cho 30

b. Ta thấy : M = 5 + 52 + 53 + ... + 580 cchia hết cho số nguyên tố 5

Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)

=> M = 5 + 52 + 53 + ... + 580  không chia hết cho 52 (do 5 không chia hết cho 52)

=> M chia hết cho 5 nhưng không chia hết cho 52

=> M không phải số chính phương

19 tháng 3 2018

a) M= 5+5^2+5^3+.....+5^80

M=5^1×1+5^1×5+5^3×1+5^3×5+...+5^79×1+5^79×5

M=5^1×(1+5)+5^3×(1+5)+...+5^79×(1+5)

M=5^1×6+5^3×6+...5^79×6

M=6×(5^1+5^3+...+5^79

Có 6 chia hết cho 6 nênM chia hết cho 6

b)M không là số chính phương vì có 6 chia hết cho 6 nhưng không chia hết cho 36 nên M không là số chính phương

19 tháng 3 2018

a) M= (5+52+53+54)+...+(577+578+579+580)

M=5(1+5+52+53)+...+577(1+5+52+53)

M=5*156+...+577*156

M=5*(26*6)+...+577*(26*6)

Vậy M chia hết cho 6

b) Tôi không biết thông cảm nhé

10 tháng 11 2016

Ta có: M = 2+22+23+....+220

    => M = (2+22+23)+(24+25+26)+...+(217+218+219+220)

      => M = 2 x (1+2+22) + 24 x (1+2+22)+....+217 x (1+2+22)

     => M = 2 x 5 + 24 x 5 +......+217 x 5

     => M = 5 x (2+24+...+217) chia hết cho 5

Vậy M chia hết cho 5

10 tháng 11 2016

M=2+22+23+...+220.

  =(2+22+23+24)+(25+26+27+28)+...+(217+218+219+220).

  =2.(1+2+22+23)+25.(1+2+22+23)+...+217.(1+2+22+23).

  =2.15+25+15+...+217+15.

   =15.2.(1+24+...+216)

=3.5.2.(1+24+...+216) chia hết cho 5

  

28 tháng 10 2016

MÌNH TRẢ LỜI ĐƯỢC NHƯNG KHI MÌNH TRẢ LỜI XONG NHỚ K CHO MÌNH 3 NHE

25 tháng 10 2016

bhhhhhhhhhhhh

16 tháng 10 2017

a) A = 5 + 52 + 53 + ... + 58

\(\Rightarrow\) 2A = 52 + 53 + 54 + ... + 59

\(\Rightarrow\) 2A - A = (52 + 53 + 54 + ... + 59) - (5 + 52 + 53 + ... + 58)

\(\Rightarrow\) A = 59 - 5 = 1 953 125 - 5 = 1 953 120

Vì 1 953 120 \(⋮\) 30 nên A \(⋮\) 30

\(\Rightarrow\) ĐPCT

5 tháng 11 2016

a)\(H=1+5+...+5^{120}\)

\(=\left(1+5\right)+...+\left(5^{119}+5^{120}\right)\)

\(=1\cdot\left(1+5\right)+...+5^{119}\left(1+5\right)\)

\(=1\cdot6+...+5^{119}\cdot6\)

\(=6\cdot\left(1+...+5^{119}\right)⋮6\left(DPCM\right)\)

b)\(H=1+5+...+5^{120}\)

\(=\left(1+5+5^2\right)+...+\left(5^{118}+5^{119}+5^{120}\right)\)

\(=1\left(1+5+5^2\right)+...+5^{118}\left(1+5+5^2\right)\)

\(=1\cdot31+...+5^{118}\cdot31\)

\(=31\cdot\left(1+...+5^{118}\right)⋮31\left(DPCM\right)\)

5 tháng 11 2016

thanhs bạn nhe

Bài 3:

a: Ta có: \(A=5+5^2+5^3+...+5^8\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)

\(=30\left(1+5^2+5^4+5^6\right)⋮30\)

b: \(B=3+3^3+3^5+...+3^{29}\)

\(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)\)

\(=273\left(1+3^6+...+3^{24}\right)⋮273\)