Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
đkxđ a>=0 a khác 1
\(C=\left(\frac{a}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(C=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+3}{a-1}\)
\(C=\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)
b)
\(a=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\sqrt{a}=\sqrt{3}-1\)
thay vào nha
c) \(C=\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)
để c<0 thì \(\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}< 0\)
mà \(\sqrt{a}\left(\sqrt{a}+3\right)>0\)
\(\left(a-1\right)\left(\sqrt{a}+1\right)< 0\)
mà \(\sqrt{a}+1>0\)
nên a-1<0
\(0\le a< 1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ:...
\(A=\left(\frac{\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a}+1}\right).\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}=\frac{1}{a}\)
\(C=\left(\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(=\left(\frac{\left(\sqrt{x}+1\right)}{-\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)}.\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)}\)
\(=\left(-1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\sqrt{x}=\left(\frac{-x-\sqrt{x}-1+x+\sqrt{x}}{x+\sqrt{x}+1}\right)\sqrt{x}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Khi x = 36 thì A = \(\frac{\sqrt{36}+4}{\sqrt{36}+2}\Leftrightarrow\frac{5}{4}\)
Vậy khi x = 36 thì A = \(\frac{5}{4}\)
2) B = \((\frac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}+\frac{4\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}):\frac{x+16}{\sqrt{x}+2}\)
= \(\frac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}.\frac{\sqrt{x}+2}{x+16}=\frac{x+16}{x-16}.\frac{\sqrt{x}+2}{x+16}\)
= \(\frac{\sqrt{x}+2}{x-16}\)
Vậy B = \(\frac{\sqrt{x}+2}{x-16}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{23}+\sqrt{25}}\)
\(2A=\frac{2}{\sqrt{3}+\sqrt{1}}+\frac{2}{\sqrt{5}+\sqrt{3}}+...+\frac{2}{\sqrt{25}+\sqrt{23}}\)\(2A=\frac{2\left(\sqrt{3}-\sqrt{1}\right)}{\left(\sqrt{3}+\sqrt{1}\right)\left(\sqrt{3}-\sqrt{1}\right)}+\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+...+\frac{2\left(\sqrt{25}-\sqrt{23}\right)}{\left(\sqrt{25}+\sqrt{23}\right)\left(\sqrt{25}-\sqrt{23}\right)}\)
\(2A=\frac{2\left(\sqrt{3}-\sqrt{1}\right)}{2}+\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{2}+...+\frac{2\left(\sqrt{25}-\sqrt{23}\right)}{2}\)
\(2A=\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+\sqrt{25}-\sqrt{23}\)
\(2A=\sqrt{25}-\sqrt{1}\)
\(2A=4\)
\(A=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
=\(\frac{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)-\(\frac{2b}{a-b}\)
=\(\frac{\sqrt{a}^2+\sqrt{ab}-\sqrt{ab}+\sqrt{b}^2}{a-b}\)-\(\frac{2b}{a-b}\)
=\(\frac{a+b}{a-b}\)-\(\frac{2b}{a-b}\)
=\(\frac{a+b-2b}{a-b}\)
=\(\frac{a-b}{a-b}\)
=1
mong là đúng đừng trách mình nếu sai nhé ^^
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: Tính
a) Ta có: \(\left(\sqrt{3}+2\right)^2\)
\(=\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot2+2^2\)
\(=3+4\sqrt{3}+4\)
\(=7+4\sqrt{3}\)
b) Ta có: \(-\left(\sqrt{2}-1\right)^2\)
\(=-\left[\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2\right]\)
\(=-\left(2-2\sqrt{2}+1\right)\)
\(=-\left(3-2\sqrt{2}\right)\)
\(=2\sqrt{2}-3\)
Bài 2: Tính
a) Ta có: \(0.5\cdot\sqrt{100}-\sqrt{\frac{25}{4}}\)
\(=\frac{1}{2}\cdot10-\frac{5}{2}\)
\(=5-\frac{5}{2}\)
\(=\frac{5}{2}\)
b) Ta có: \(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right):5\)
\(=\left(\sqrt{\frac{25}{16}}-\frac{3}{4}\right)\cdot\frac{1}{5}\)
\(=\left(\frac{5}{4}-\frac{3}{4}\right)\cdot\frac{1}{5}\)
\(=\frac{2}{4}\cdot\frac{1}{5}\)
\(=\frac{1}{10}\)
Bài 3: So sánh
a) Ta có: \(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{12}\)
mà \(\sqrt{18}>\sqrt{12}\)(Vì 18>12)
nên \(3\sqrt{2}>2\sqrt{3}\)
\(\Leftrightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
b) Ta có: \(\left(15-2\sqrt{10}\right)^2\)
\(=225-2\cdot15\cdot2\sqrt{10}+\left(2\sqrt{10}\right)^2\)
\(=225-60\sqrt{10}+40\)
\(=265-60\sqrt{10}\)
\(=135+130-60\sqrt{10}\)
Ta có: \(\left(3\sqrt{15}\right)^2=3^2\cdot\left(\sqrt{15}\right)^2=9\cdot15=135\)
Ta có: \(130-60\sqrt{10}\)
\(=\sqrt{16900}-\sqrt{36000}< 0\)(Vì 16900<36000)
\(\Leftrightarrow130-60\sqrt{10}+135< 135\)(cộng hai vế của BĐT cho 135)
\(\Leftrightarrow\left(15-2\sqrt{10}\right)^2< \left(3\sqrt{15}\right)^2\)
\(\Leftrightarrow15-2\sqrt{10}< 3\sqrt{15}\)
\(\Leftrightarrow\frac{15-2\sqrt{10}}{3}< \frac{3\sqrt{15}}{3}=\sqrt{15}\)
hay \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: ...
\(D=\left(\frac{2\sqrt{x}}{x\left(\sqrt{x}-1\right)+\sqrt{x}-1}-\frac{1}{\sqrt{x-1}}\right):\left(\frac{x+\sqrt{x}+1}{x+1}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{x+1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\left(\frac{x+1}{x+\sqrt{x}+1}\right)\)
\(=\frac{\left(2\sqrt{x}-x-1\right)}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\frac{\left(x+1\right)}{\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{1-\sqrt{x}}{x+\sqrt{x}+1}\)
b/ Do \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\) Để \(D>0\Leftrightarrow1-\sqrt{x}>0\Leftrightarrow\sqrt{x}< 1\Rightarrow0\le x< 1\)
a) \(K=2\left(\dfrac{1}{\sqrt{a-1}}-\dfrac{1}{\sqrt{a}}\right):\dfrac{\sqrt{a}-1}{a^2-a}\)
\(=2\cdot\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}\cdot\dfrac{a^2-a}{\sqrt{a}-1}\)
\(=2\cdot\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}\cdot\dfrac{a^2-a}{\sqrt{a}-1}\)
\(=2\cdot\dfrac{1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}\cdot\dfrac{a^2-a}{\sqrt{a}-1}\)
\(=\dfrac{2\left(a^2-a\right)}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)^2}\)
\(=\dfrac{2a^2-2a}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)^2}\)
\(=\dfrac{\left(2a^2-2a\right)\sqrt{a}}{a\cdot\left(a-2\sqrt{a}+1\right)}\)
\(=\dfrac{a\cdot\left(2a-2\right)\sqrt{a}}{a\cdot\left(a-2\sqrt{a}+1\right)}\)
\(=\dfrac{\left(2a-2\right)\sqrt{a}}{a-2\sqrt{a}+1}\)
\(=\dfrac{2a\sqrt{a}-2\sqrt{a}}{a-2\sqrt{a}+1}\)