\(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

a. \(ĐKXĐ:a\ge0,a\ne2\)

\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)

\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(H=\dfrac{a-4-8-\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\left(a-4\sqrt{a}\right)+\left(3\sqrt{a}-12\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(H=\dfrac{\sqrt{a}\left(\sqrt{a}-4\right)+3\left(\sqrt{a}-4\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b. Mk nghĩ là H < 2 chứ

\(H=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}< 2\)

\(\Leftrightarrow\dfrac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}=\dfrac{-\sqrt{a}}{\sqrt{a}-2}< 0\)

\(\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)

c. \(a^2+3a=0\Leftrightarrow a\left(a+3\right)=0\Leftrightarrow\left[{}\begin{matrix}a=0\left(n\right)\\a=-3\left(l\right)\end{matrix}\right.\)

Thay \(a=0\) và H ta được:

\(\dfrac{0-4}{0-2}=2\)

d. \(H=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}=5\Leftrightarrow\dfrac{\sqrt{a}-2-2}{\sqrt{a}-2}=5\Leftrightarrow1-\dfrac{2}{\sqrt{a}-2}=5\)

\(\Leftrightarrow\dfrac{2}{\sqrt{a}-2}=-4\Leftrightarrow-4\sqrt{a}+8=2\Leftrightarrow-4\sqrt{a}=-6\Leftrightarrow\sqrt{a}=\dfrac{3}{2}\Leftrightarrow a=\dfrac{9}{4}\)

a: \(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}-\dfrac{1}{\sqrt{a}-2}\)

\(=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để H<2 thì H-2<0

\(\Leftrightarrow\dfrac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}< 0\)

=>căn a-2>0

hay a>4

d: Để H=5 thì căn a-4=5 căn a-10

=>-4 căn a=-6

=>căn a=3/2

hay a=9/4

8 tháng 8 2018

a) Rut gon H

\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)

\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}-\dfrac{1}{\sqrt{a}-2}\)

DKXD : \(\left\{{}\begin{matrix}\sqrt{a}+3\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ne9\\a\ne4\end{matrix}\right.\)

Ta co : \(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(H=\dfrac{a-\sqrt{a}-6}{a+\sqrt{a}-6}\)

28 tháng 10 2018

a,Đk: a≥0 ; a khác 4

H=\(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}\) -\(\dfrac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\) -\(\dfrac{1}{\sqrt{a}-2}\)

= \(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

=\(\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

=\(\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

=\(\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

=\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b, Để H<2

<=>\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) <2

<=> \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) -2<0

<=>\(\dfrac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}\) <0

<=>\(\dfrac{-\sqrt{a}}{\sqrt{a}-2}\) <0

<=>\(\left\{{}\begin{matrix}-\sqrt{a}< 0\\\sqrt{a}-2>0\end{matrix}\right.\) ( vì \(\sqrt{a}>0< =>-\sqrt{a}< 0\)

<=> a>4

vậy để H <2 khi a>4

c, Ta có a\(^2\) +3a=0

<=> a(a+3)=0

<=>a=0 hoặc a=-3(vô lí)

+ Với a=0 <=>\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) =\(\dfrac{0-4}{0-2}\) =2

d, Để H=5

<=> \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) =5

<=>\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) -5=0

<=>\(\dfrac{\sqrt{a}-4-5\sqrt{a}+10}{\sqrt{a}-2}\) =0

<=>-4\(\sqrt{a}\) +6=0

<=> a=\(\dfrac{9}{4}\)

NV
12 tháng 10 2019

ĐKXĐ: \(x\ge0;a\ne4\)

\(H=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\frac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\frac{\sqrt{a}+3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

\(=\frac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\frac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

\(=\frac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)

\(H< 2\Rightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}< 2\Rightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}-2< 0\)

\(\Rightarrow\frac{\sqrt{a}-4-2\left(\sqrt{a}-2\right)}{\sqrt{a}-2}< 0\Rightarrow\frac{-\sqrt{a}}{\sqrt{a}-2}< 0\)

\(\Rightarrow\frac{\sqrt{a}}{\sqrt{a}-2}>0\Rightarrow\sqrt{a}-2>0\Rightarrow a>4\)

\(a^2+3a=0\Rightarrow a\left(a+3\right)=0\Rightarrow a=0\) (do \(a\ge0\Rightarrow a+3>0\))

\(\Rightarrow H=\frac{0-4}{0-2}=2\)

\(H=5\Rightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}=5\Rightarrow\sqrt{a}-4=5\sqrt{a}-10\)

\(\Rightarrow4\sqrt{a}=6\Rightarrow\sqrt{a}=\frac{3}{2}\Rightarrow a=\frac{9}{4}\)

17 tháng 6 2016

Chắc đề em gõ bị lỗi nhỏ :) Cô sẽ sửa nhé :)

a. ĐK: \(a\ge0,a\ne4\)

\(H=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{a+\sqrt{a}-6}=\frac{a-4-4-\sqrt{a}-3}{a+\sqrt{a}-6}\)

\(=\frac{a-\sqrt{a}-12}{a+\sqrt{a}-6}=\frac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)

b. \(H< 2\Leftrightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}< 2\Leftrightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}-2< 0\Leftrightarrow\frac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}< 0\)

\(\Leftrightarrow\frac{-\sqrt{a}}{\sqrt{a}-2}< 0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow x>4\)

Tương tự với các câu còn lại nhé :)

21 tháng 9 2017

đkxđ a>=0 a khác 1

\(C=\left(\frac{a}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(C=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+3}{a-1}\)

\(C=\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)

b)

\(a=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\sqrt{a}=\sqrt{3}-1\)

thay vào nha

c) \(C=\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)

để c<0 thì \(\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}< 0\)

mà \(\sqrt{a}\left(\sqrt{a}+3\right)>0\)

\(\left(a-1\right)\left(\sqrt{a}+1\right)< 0\)

mà \(\sqrt{a}+1>0\)

nên a-1<0

\(0\le a< 1\)

29 tháng 4 2019

1a)

\(D=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\left(ĐK:a\ge0\right)\)

\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

21 tháng 11 2022

2:

a: \(E=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: a^2+3a=0

=>a(a+3)=0

=>a=0(nhận) hoặc a=-3(loại)

Khi a=0 thì \(E=\dfrac{-4}{-2}=2\)

12 tháng 10 2019

a. ĐKXĐ : \(a\ge0;a\ne1;a\ne4;a\ne9\)

\(C=-\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}-1}-\frac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)}{\sqrt{a}-2}+\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\)

\(=-\sqrt{a}-1-a-2\sqrt{a}-4+\sqrt{a}-2\)

\(=-a-2\sqrt{a}-7\)

b. \(C=-a-2\sqrt{a}-7\le-7\)

\(\text{Dấu }=\text{xảy ra }\Leftrightarrow a=0\)

c. \(a^2-3a=0\)

\(\Leftrightarrow a\left(a-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}C=-7\\C=-10-2\sqrt{3}\end{matrix}\right.\)

d. \(C=-13\)

\(\Leftrightarrow-a-2\sqrt{a}-7=-13\)

\(\Leftrightarrow a+2\sqrt{a}-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-1+\sqrt{7}\left(TM\right)\\a=-1-\sqrt{7}\left(\text{loại}\right)\end{matrix}\right.\)

\(\Leftrightarrow a=-1+\sqrt{7}\)